hypothalamic inflammation
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 79)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Priscila Raimundo ◽  
Vinícius Rodrigues ◽  
Maycon Emílio-Silva ◽  
Victória Gomes ◽  
Gabriela Bueno ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Xuan Li ◽  
You Cai ◽  
Jiao Luo ◽  
Jingyun Ding ◽  
Guojun Yao ◽  
...  

AbstractNecroptosis, a form of programmed cell death, accounts for many inflammations in a wide range of diseases. Diet-induced obesity is manifested by low-grade inflammation in the mediobasal hypothalamus (MBH), and microglia are implicated as critical responsive components for this process. Here, we demonstrate that microglial necroptosis plays a pivotal role in obesity-related hypothalamic inflammation, facilitating proinflammatory cytokine production, such as TNF-α and IL-1β. Treatment with the anti-diabetic drug metformin effectively reduces the obese phenotypes in the high-fat diet (HFD)-fed mice, attributing to remission of hypothalamic inflammation partly through repressing microglial necroptosis. Importantly, using the receptor-interacting protein kinase 1 inhibitor, necrostatin-1s, could not suppress the microglial inflammation nor prevent body weight gain in the obese mice, indicating that the microglial necroptosis is RIPK1-independent. Altogether, these findings offer new insights into hypothalamic inflammation in diet-induced obesity and provide a novel mechanism of action for metformin in obesity treatment.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hui-Ting Huang ◽  
Pei-Chun Chen ◽  
Po-See Chen ◽  
Wen-Tai Chiu ◽  
Yu-Min Kuo ◽  
...  

Microglia and astrocytes are the glial cells of the central nervous system (CNS) to support neurodevelopment and neuronal function. Yet, their activation in association with CNS inflammation is involved in the initiation and progression of neurological disorders. Mild inflammation in the periphery and glial activation called as gliosis in the hypothalamic region, arcuate nucleus (ARC), are generally observed in obese individuals and animal models. Thus, reduction in peripheral and central inflammation is considered as a strategy to lessen the abnormality of obesity-associated metabolic indices. In this study, we reported that acute peripheral challenge by inflammagen lipopolysaccharide (LPS) upregulated the expression of hypothalamic dopamine type 2 receptor (D2R) mRNA, and chronic feeding by high-fat-diet (HFD) significantly caused increased levels of D2R in the ARC. The in vitro and in vivo studies indicated that an FDA-approved antipsychotic drug named trifluoperazine (TFP), a D2R inhibitor was able to suppress LPS-stimulated activation of microglia and effectively inhibited LPS-induced peripheral inflammation, as well as hypothalamic inflammation. Further findings showed daily peripheral administration intraperitoneally (i.p.) by TFP for 4 weeks was able to reduce the levels of plasma tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in accompany with lower levels of plasma glucose and insulin in obese mice receiving HFD for 16 weeks when compared those in obese mice without TFP treatment. In parallel, the activation of microglia and astrocytes in the ARC was also inhibited by peripheral administration by TFP. According to our results, TFP has the ability to suppress HFD-induced ARC gliosis and inflammation in the hypothalamus.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3460
Author(s):  
Georgios Valsamakis ◽  
Angeliki Arapaki ◽  
Dimitris Balafoutas ◽  
Evangelia Charmandari ◽  
Nikolaos F. Vlahos

Recent studies have shown a rise in precocious puberty, especially in girls. At the same time, childhood obesity due to overnutrition and energy imbalance is rising too. Nutrition and fertility are currently facing major challenges in our societies, and are interconnected. Studies have shown that high-fat and/or high-glycaemic-index diet can cause hypothalamic inflammation and microglial activation. Molecular and animal studies reveal that microglial activation seems to produce and activate prostaglandins, neurotrophic factors activating GnRH (gonadotropin-releasing hormone expressing neurons), thus initiating precocious puberty. GnRH neurons’ mechanisms of excitability are not well understood. In this review, we study the phenomenon of the rise of precocious puberty, we examine the physiology of GnRH neurons, and we review the recent literature regarding the pathophysiological mechanisms that connect diet-induced hypothalamic inflammation and diet-induced phoenixin regulation with precocious puberty.


2021 ◽  
Vol 8 ◽  
Author(s):  
Camila Guazzelli Marques ◽  
Marcus V. L. dos Santos Quaresma ◽  
Fernanda Patti Nakamoto ◽  
Ana Carolina Oumatu Magalhães ◽  
Glaice Aparecida Lucin ◽  
...  

Factors linked to modern lifestyles, such as physical inactivity, Western diet, and poor sleep quality have been identified as key contributors to the positive energy balance (PEB). PEB rises adipose tissue hypertrophy and dysfunction over the years, affecting cells and tissues that are metabolically critical for energy homeostasis regulation, especially skeletal muscle, hypothalamic-pituitary-adrenal axis, and gut microbiota. It is known that the interaction among lifestyle factors and tissue metabolic dysfunction increases low-grade chronic systemic inflammation, leading to insulin resistance and other adverse metabolic disorders. Although immunometabolic mechanisms are widely discussed in obesity, neuroimmunoendocrine pathways have gained notoriety, as a link to neuroinflammation and central nervous system disorders. Hypothalamic inflammation has been associated with food intake dysregulation, which comprises homeostatic and non-homeostatic mechanisms, promoting eating behavior changes related to the obesity prevalence. The purpose of this review is to provide an updated and integrated perspective on the effects of Western diet, sleep debt, and physical exercise on the regulation of energy homeostasis and low-grade chronic systemic inflammation. Subsequently, we discuss the intersection between systemic inflammation and neuroinflammation and how it can contribute to energy imbalance, favoring obesity. Finally, we propose a model of interactions between systemic inflammation and neuroinflammation, providing new insights into preventive and therapeutic targets for obesity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Josimar Macedo de Castro ◽  
Dirson João Stein ◽  
Helouise Richardt Medeiros ◽  
Carla de Oliveira ◽  
Iraci L. S. Torres

Obesity treatments, such as calorie restriction (CR), eventually lead to muscle wasting and higher rates of neuroinflammation, whereas hypothalamic inflammatory conditions impair body weight (BW) control. Nicotinamide riboside (NR) has been proposed against obesity but with little evidence on skeletal muscle tissue (SMT) and neuroinflammation. Therefore, we aimed to investigate the effects of CR on SMT and on hypothalamic inflammatory biomarkers in obese adult male Wistar rats, and whether NR supplementation alone or in combination with CR affects these parameters. Obesity was induced in rats through a cafeteria diet for 6 weeks. After that, a group of obese rats was exposed to CR, associated or not associated with NR supplementation (400 mg/kg), for another 4 weeks. As a result, obese rats, with or without CR, presented lower relative weight of SMT when compared with eutrophic rats. Rats under CR presented lower absolute SMT weight compared with obese and eutrophic rats, in addition to presenting elevated hypothalamic levels of TNF-α. NR supplementation, in all groups, enhanced weight loss and increased relative weight of the SMT. Furthermore, in animals under CR, NR reversed increases TNF-α levels in the hypothalamus. In this study, these data, although succinct, are the first to evidence the effects of NR on SMT and neuroinflammation when associated with CR, especially in obesity conditions. Therefore, this provides preliminary support for future studies in this investigative field. Furthermore, NR emerges as a potential adjuvant for preventing muscle mass loss in the weight loss processes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandre Moura-Assis ◽  
Pedro A. S. Nogueira ◽  
Jose C. de-Lima-Junior ◽  
Fernando M. Simabuco ◽  
Joana M. Gaspar ◽  
...  

AbstractObesity and high-fat diet (HFD) consumption result in hypothalamic inflammation and metabolic dysfunction. While the TLR4 activation by dietary fats is a well-characterized pathway involved in the neuronal and glial inflammation, the role of its accessory proteins in diet-induced hypothalamic inflammation remains unknown. Here, we demonstrate that the knockdown of TLR4-interactor with leucine-rich repeats (Tril), a functional component of TLR4, resulted in reduced hypothalamic inflammation, increased whole-body energy expenditure, improved the systemic glucose tolerance and protection from diet-induced obesity. The POMC-specific knockdown of Tril resulted in decreased body fat, decreased white adipose tissue inflammation and a trend toward increased leptin signaling in POMC neurons. Thus, Tril was identified as a new component of the complex mechanisms that promote hypothalamic dysfunction in experimental obesity and its inhibition in the hypothalamus may represent a novel target for obesity treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bo Zhou ◽  
Yaxia Yuan ◽  
Le Shi ◽  
Sheng Hu ◽  
Dong Wang ◽  
...  

Obesity is characterized by an excessive body mass, but is also closely associated with metabolic syndrome. And, so far, only limited pharmacological treatments are available for obesity management. Celastrol, a pentacyclic triterpenoid from a traditional Chinese medicine (Tripterygium wilfordii Hook.f.), has shown remarkable potency against obesity, inflammation and cancer, but its high toxicity, low natural abundance and tedious chemical synthesis hindered its translation into clinics. In the present work, a triterpenoid library was screened for compounds with both high natural abundance and structural similarity to celastrol; from this library, glycyrrhetinic acid (GA), a compound present in extremely high yields in Glycyrrhiza uralensis Fisch. ex DC., was selected as a possible scaffold for a celastrol mimic active against obesity. A simple chemical modification of GA resulted in GA-02, a derivative that suppressed 68% of food intake in diet-induced obesity mice and led to 26.4% weight loss in 2 weeks. GA-02 plays a role in obesity treatment by re-activating leptin signaling and reducing systemic and, more importantly, hypothalamic inflammation. GA-02 was readily bioavailable with unnoticeable in vitro and in vivo toxicities. The strategy of scaffold search and modification on the basis of bio-content and structural similarity has proved to be a green, economic, efficient and practical way of widening the medicinal applications of “imperfect” bioactive natural compounds.


Sign in / Sign up

Export Citation Format

Share Document