Preventive Effect of Bupleurum chinense on Nasal Inflammation via Suppressing T Helper Type 2, Eosinophil and Mast Cell Activation

2019 ◽  
Vol 47 (02) ◽  
pp. 405-421 ◽  
Author(s):  
Thi Tho Bui ◽  
Chun Hua Piao ◽  
Eunjin Hyeon ◽  
Yanjing Fan ◽  
Dae Woon Choi ◽  
...  

Bupleurum chinense is distributed in East Asia and has been used as a traditional herbal medicine for more than a thousand years. Though B. chinense has been reported to have immunomodulatory, anti-inflammatory, anti-oxidant, hepato-protective, antipyretic, analgesic and antifibrotic effects, its specific effect on allergic rhinitis disease has not been clarified. In this study, we investigated the anti-allergic and anti-inflammation effects of B. chinense extract (BCE) in an ovalbumin (OVA)-induced allergic rhinitis (AR) mouse model. Oral administration of BCE in a dose-independent manner regulated the balance of Th1/Th2/Treg cell differentiation in AR mice. Accordingly, BCE attenuated the expression of Th2-related cytokines such as IL-4, IL-5 and IL-13 in nasal lavage fluid (NALF) and nasal tissue and up-regulated the secretion of Th1/Treg cells including IL-10, IL-12 and IFN-[Formula: see text]. Also, BCE inhibited the formation and migration of eosinophils to the nasal mucosa and NALF, as well as suppressed CCL24, an eosinophil-specific chemoattractant in NALF. The levels of anti-OVA specific IgE and anti-OVA specific IgG1 were decreased, and as a result, the allergic response was attenuated by BCE via inhibiting mast cells accumulation in nasal mucosa and serum histamine release. The nasal allergy symptoms, nasal mucosal swelling, epithelial barrier disruption and mucus hyperplasia were obviously ameliorated. These results suggest that BCE may have therapeutic potential for treating allergic rhinitis through modulating the accumulation and activation of important leukocytes in the immune system such as Th1, Th2, Treg, eosinophils and mast cells.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiangli Zhuang ◽  
Bo Wu ◽  
Caixia Qiu ◽  
Si Ai ◽  
Jian Zheng

Fyn-STAT5 is considered to be the frontier signaling pathway of IgE-mediated allergic reactions related to mast cell activation, but research on allergic rhinitis (AR) has been rarely reported. Xingbi gel nasal drops (XGND) are a compound preparation of traditional Chinese medicine, which has the exact therapeutic efficacy on AR. The current study aimed to observe the effects of XGND on Fyn-STAT5 pathway in AR guinea pig nasal mucosal fibroblasts in vitro and further illuminate the possible therapeutic mechanism of XGND on AR. The isolated and cultured nasal mucosa fibroblasts from AR guinea pigs were identified by immunocytochemical staining. Real-time PCR and western blot were performed to detect the mRNA and protein levels of the Fyn-STAT5 pathway and related cytokines in AR guinea pig nasal mucosal fibroblasts. The results indicated that XGND may interfere with the Fyn-STAT5 pathway by reducing the expression of Fyn and SCF and upregulating STAT5 and IL-10, thereby inhibiting proliferation and degranulation of mast cells, correcting Th1/Th2 immune imbalance, and then alleviating the immune response of AR fibroblasts. Our study revealed the possible regulatory mechanism of XGND in AR and laid an experimental foundation for improving the clinical efficacy of AR and enriching the clinical medication for AR.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tongqian Wu ◽  
Lan Ma ◽  
Xiaoqian Jin ◽  
Jingjing He ◽  
Ke Chen ◽  
...  

BackgroundThe calcium-binding protein S100A4 demonstrates important regulatory roles in many biological processes including tumorigenesis and inflammatory disorders such as allergy. However, the specific mechanism of the contribution of S100A4 to allergic diseases awaits further clarification.ObjectiveTo address the effect of S100A4 on the regulation of mast cell activation and its impact on allergy.MethodsBone marrow-derived cultured mast cells (BMMCs) were derived from wild-type (WT) or S100A4-/- mice for in vitro investigation. WT and S100A4-/- mice were induced to develop a passive cutaneous anaphylaxis (PCA) model, a passive systemic anaphylaxis (PSA) model, and an ovalbumin (OVA)-mediated mouse asthma model.ResultsFollowing OVA/alum-based sensitization and provocation, S100A4-/- mice demonstrated overall suppressed levels of serum anti-OVA IgE and IgG antibodies and proinflammatory cytokines in serum, bronchoalveolar lavage fluid (BALF), and lung exudates. S100A4-/- mice exhibited less severe asthma signs which included inflammatory cell infiltration in the lung tissue and BALF, and suppressed mast cell recruitment in the lungs. Reduced levels of antigen reencounter-induced splenocyte proliferation in vitro were recorded in splenocytes from OVA-sensitized and challenged mice that lacked S100A4-/-. Furthermore, deficiency in the S100A4 gene could dampen mast cell activation both in vitro and in vivo, evidenced by reduced β-hexosaminidase release and compromised PCA and PSA reaction. We also provided evidence supporting the expression of S100A4 by mast cells.ConclusionS100A4 is required for mast cell functional activation, and S100A4 may participate in the regulation of allergic responses at least partly through regulating the activation of mast cells.


2018 ◽  
Vol 315 (3) ◽  
pp. E357-E366 ◽  
Author(s):  
Shalini Jain ◽  
Anna Panyutin ◽  
Naili Liu ◽  
Cuiying Xiao ◽  
Ramón A. Piñol ◽  
...  

Intraperitoneal administration of the melanocortin agonist melanotan II (MTII) to mice causes a profound, transient hypometabolism/hypothermia. It is preserved in mice lacking any one of melanocortin receptors 1, 3, 4, or 5, suggesting a mechanism independent of the canonical melanocortin receptors. Here we show that MTII-induced hypothermia was abolished in KitW-sh/W-sh mice, which lack mast cells, demonstrating that mast cells are required. MRGPRB2 is a receptor that detects many cationic molecules and activates mast cells in an antigen-independent manner. In vitro, MTII stimulated mast cells by both MRGPRB2-dependent and -independent mechanisms, and MTII-induced hypothermia was intact in MRGPRB2-null mice. Confirming that MTII activated mast cells, MTII treatment increased plasma histamine levels in both wild-type and MRGPRB2-null, but not in KitW-sh/W-sh, mice. The released histamine produced hypothermia via histamine H1 receptors because either a selective antagonist, pyrilamine, or ablation of H1 receptors greatly diminished the hypothermia. Other drugs, including compound 48/80, a commonly used mast cell activator, also produced hypothermia by both mast cell-dependent and -independent mechanisms. These results suggest that mast cell activation should be considered when investigating the mechanism of drug-induced hypothermia in mice.


1997 ◽  
Vol 186 (3) ◽  
pp. 449-454 ◽  
Author(s):  
K. Takeda ◽  
E. Hamelmann ◽  
A. Joetham ◽  
L.D. Shultz ◽  
G.L. Larsen ◽  
...  

Mast cells are the main effector cells of immediate hypersensitivity and anaphylaxis. Their role in the development of allergen-induced airway hyperresponsiveness (AHR) is controversial and based on indirect evidence. To address these issues, mast cell–deficient mice (W/W  v) and their congenic littermates were sensitized to ovalbumin (OVA) by intraperitoneal injection and subsequently challenged with OVA via the airways. Comparison of OVA-specific immunoglobulin E (IgE) levels in the serum and numbers of eosinophils in bronchoalveolar lavage fluid or lung digests showed no differences between the two groups of mice. Further, measurements of airway resistance and dynamic compliance at baseline and after inhalation of methacholine were similar. These data indicate that mast cells or IgE–mast cell activation is not required for the development of eosinophilic inflammation and AHR in mice sensitized to allergen via the intraperitoneal route and challenged via the airways.


2008 ◽  
Vol 105 (46) ◽  
pp. 18053-18057 ◽  
Author(s):  
Katherine M. Nautiyal ◽  
Ana C. Ribeiro ◽  
Donald W. Pfaff ◽  
Rae Silver

Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient KitW−sh/W−sh (sash−/−) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links.


2021 ◽  
pp. 000348942199503
Author(s):  
Michael A. Belsky ◽  
Erica Corredera ◽  
Hridesh Banerjee ◽  
John Moore ◽  
Li Wang ◽  
...  

Objectives: Previous work showed that higher polyp mast cell load correlated with worse postoperative endoscopic appearance in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). Polyp epithelial mast cells showed increased expression of T-cell/transmembrane immunoglobulin and mucin domain protein 3 (TIM-3), a receptor that promotes mast cell activation and cytokine production. In this study, CRSwNP patients were followed post-operatively to investigate whether mast cell burden or TIM-3 expression among mast cells can predict recalcitrant disease. Methods: Nasal polyp specimens were obtained via functional endoscopic sinus surgery (FESS) and separated into epithelial and stromal layers via enzymatic digestion. Mast cells and TIM-3-expressing mast cells were identified via flow cytometry. Mann-Whitney U tests and Cox proportional hazard models assessed whether mast cell burden and TIM-3 expression were associated with clinical outcomes, including earlier recurrence of polypoid edema and need for treatment with steroids. Results: Twenty-three patients with CRSwNP were studied and followed for 6 months after undergoing FESS. Higher mast cell levels were associated with earlier recurrence of polypoid edema: epithelial HR = 1.283 ( P = .02), stromal HR = 1.103 ( P = .02). Percent of mast cells expressing TIM-3 in epithelial or stromal layers was not significantly associated with earlier recurrence of polypoid edema. Mast cell burden and TIM-3+ expression were not significantly associated with need for future treatment with steroids post-FESS. Conclusions: Mast cell load in polyp epithelium and stroma may predict a more refractory postoperative course for CRSwNP patients. The role of TIM-3 in the chronic inflammatory state seen in CRSwNP remains unclear.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1759
Author(s):  
Yuhki Yanase ◽  
Shunsuke Takahagi ◽  
Koichiro Ozawa ◽  
Michihiro Hide

Chronic spontaneous urticaria (CSU) is a common skin disorder characterized by an almost daily recurrence of wheal and flare with itch for more than 6 weeks, in association with the release of stored inflammatory mediators, such as histamine, from skin mast cells and/or peripheral basophils. The involvement of the extrinsic coagulation cascade triggered by tissue factor (TF) and complement factors, such as C3a and C5a, has been implied in the pathogenesis of CSU. However, it has been unclear how the TF-triggered coagulation pathway and complement factors induce the activation of skin mast cells and peripheral basophils in patients with CSU. In this review, we focus on the role of vascular endothelial cells, leukocytes, extrinsic coagulation factors and complement components on TF-induced activation of skin mast cells and peripheral basophils followed by the edema formation clinically recognized as urticaria. These findings suggest that medications targeting activated coagulation factors and/or complement components may represent new and effective treatments for patients with severe and refractory CSU.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Ilze Bot ◽  
Saskia C de Jager ◽  
Alma Zernecke ◽  
Christian Weber ◽  
Theo J van Berkel ◽  
...  

Activated mast cells have been identified in the perivascular tissue of human coronary artery plaques. As mast cells have been described to release a whole array of chemokines including interleukin 8 (IL-8) and MIP1 α, we propose that activated mast cells play a pivotal role in leukocyte recruitment at advanced stages of atherosclerotic plaque development. Peritoneal mast cells of either C57Bl/6 or mast cell deficient Kit(W −sh /W −sh ) mice were activated by injection of compound 48/80 (1.2 mg/kg). Interestingly, mast cell activation led to a massive neutrophil influx into the peritoneal cavity at 3 hours after activation (controls: 1 ± 0.7*10 4 Gr1 + -neutrophils/ml up to 8 ± 0.2*10 4 Gr1 + neutrophils/ml at 3 hours after activation, *P<0.05), while neutrophil numbers in Kit(W −sh /W −sh ) mice were not affected by compound 48/80 administration. Moreover, increased levels of CXCR2 + Gr1 + neutrophils (t=0: 0.55 ± 0.07% versus t=3 hours: 1.00 ± 0.12%, *P<0.05) were observed after mast cell activation. Next, we investigated whether mast cell activation also translated in induced leukocyte adhesion to advanced atherosclerotic plaques. Adventitial mast cells of advanced collar aided carotid artery plaques were activated by local application of a dinitrophenyl-BSA (DNP) challenge in ApoE −/− mice. Three days later, the carotid artery segments carrying the plaques were isolated and perfused ex vivo with rhodamine labeled leukocytes, showing a dramatically increased number of adherent leukocytes after mast cell activation (49 ± 6 versus 19 ± 4 leukocytes/microscopic field for DNP versus control plaques, respectively, **P<0.001). Strikingly, antibody blockade of either the CXCR2 or VCAM-1 receptor VLA-4 on labeled leukocytes completely inhibited leukocyte adhesion to the atherosclerotic plaque (*P<0.05), while blockade of CCR1, -3 and -5 with Met-RANTES had no effect. In conclusion, our data suggest that chemokines such as IL-8 released from activated perivascular mast cells induce leukocyte recruitment and adhesion to the atherosclerotic plaque, aggravating the ongoing inflammatory response and thus effecting plaque destabilization. We propose that mast cell stabilization could be a new therapeutic approach in the prevention of acute coronary syndromes.


1999 ◽  
Vol 86 (1) ◽  
pp. 202-210 ◽  
Author(s):  
N. Noviski ◽  
J. P. Brewer ◽  
W. A. Skornik ◽  
S. J. Galli ◽  
J. M. Drazen ◽  
...  

Exposure to ambient ozone (O3) is associated with increased exacerbations of asthma. We sought to determine whether mast cell degranulation is induced by in vivo exposure to O3in mice and whether mast cells play an essential role in the development of pulmonary pathophysiological alterations induced by O3. For this we exposed mast cell-deficient WBB6F1- kitW/ kitW-v( kitW/ kitW-v) mice and the congenic normal WBB6F1(+/+) mice to air or to 1 or 3 parts/million O3for 4 h and studied them at different intervals from 4 to 72 h later. We found evidence of O3-induced cutaneous, as well as bronchial, mast cell degranulation. Polymorphonuclear cell influx into the pulmonary parenchyma was observed after exposure to 1 part/milllion O3only in mice that possessed mast cells. Airway hyperresponsiveness to intravenous methacholine measured in vivo under pentobarbital anesthesia was observed in both kitW/ kitW-vand +/+ mice after exposure to O3. Thus, although mast cells are activated in vivo by O3and participate in O3-induced polymorphonuclear cell infiltration into the pulmonary parenchyma, they do not participate detectably in the development of O3-induced airway hyperresponsiveness in mice.


2013 ◽  
Vol 81 (6) ◽  
pp. 2085-2094 ◽  
Author(s):  
Elin Rönnberg ◽  
Gabriela Calounova ◽  
Bengt Guss ◽  
Anders Lundequist ◽  
Gunnar Pejler

ABSTRACTGranzymes are serine proteases known mostly for their role in the induction of apoptosis. Granzymes A and B have been extensively studied, but relatively little is known about granzymes C to G and K to M. T cells, lymphohematopoietic stromal cells, and granulated metrial gland cells express granzyme D, but the function of granzyme D is unknown. Here we show that granzyme D is expressed by murine mast cells and that its level of expression correlates positively with the extent of mast cell maturation. Coculture of mast cells with live, Gram-positive bacteria caused a profound, Toll-like receptor 2 (TLR2)-dependent induction of granzyme D expression. Granzyme D expression was also induced by isolated bacterial cell wall components, including lipopolysaccharide (LPS) and peptidoglycan, and by stem cell factor, IgE receptor cross-linking, and calcium ionophore stimulation. Granzyme D was released into the medium in response to mast cell activation. Granzyme D induction was dependent on protein kinase C and nuclear factor of activated T cells (NFAT). Together, these findings identify granzyme D as a novel murine mast cell protease and implicate granzyme D in settings where mast cells are activated, such as bacterial infection and allergy.


Sign in / Sign up

Export Citation Format

Share Document