scholarly journals HIGGS MASS FROM A CASIMIR ENERGY INDUCED COSMOLOGICAL CONSTANT IN THE STANDARD MODEL

2004 ◽  
Vol 19 (13n16) ◽  
pp. 1195-1201
Author(s):  
XIAO-GANG HE

Casimir vacuum energy is divergent. It needs to be regularized. The regularization introduces a renormalization scale which may lead to a scale dependent cosmological constant. We show that the requirement of physical cosmological constant is renormalization scale independent provides important constraints on possible particle contents and their masses in particle physics models. In the Standard Model of strong and electroweak interactions, besides the Casimir vacuum energy there is also vacuum energy induced from spontaneous symmetry breaking. The requirement that the total vacuum energy to be scale independent dictates the Higgs mass to be [Formula: see text] where the summation is over fermions and Ni equals to 3 and 1 for quarks and leptons, respectively. The Higgs mass is predicted to be approximately 382 GeV.

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Azadeh Maleknejad

Abstract Upon embedding the axion-inflation in the minimal left-right symmetric gauge extension of the SM with gauge group SU(2)L × SU(2)R × U(1)B−L, [1] proposed a new particle physics model for inflation. In this work, we present a more detailed analysis. As a compelling consequence, this setup provides a new mechanism for simultaneous baryogenesis and right-handed neutrino creation by the chiral anomaly of WR in inflation. The lightest right-handed neutrino is the dark matter candidate. This setup has two unknown fundamental scales, i.e., the scale of inflation and left-right symmetry breaking SU(2)R × U(1)B−L→ U(1)Y. Sufficient matter creation demands the left-right symmetry breaking scale happens shortly after the end of inflation. Interestingly, it prefers left-right symmetry breaking scales above 1010 GeV, which is in the range suggested by the non-supersymmetric SO(10) Grand Unified Theory with an intermediate left-right symmetry scale. Although WR gauge field generates equal amounts of right-handed baryons and leptons in inflation, i.e. B − L = 0, in the Standard Model sub-sector B − LSM ≠ 0. A key aspect of this setup is that SU(2)R sphalerons are never in equilibrium, and the primordial B − LSM is conserved by the Standard Model interactions. This setup yields a deep connection between CP violation in physics of inflation and matter creation (visible and dark); hence it can naturally explain the observed coincidences among cosmological parameters, i.e., ηB ≃ 0.3Pζ and ΩDM ≃ 5ΩB. The new mechanism does not rely on the largeness of the unconstrained CP-violating phases in the neutrino sector nor fine-tuned masses for the heaviest right-handed neutrinos. The SU(2)R-axion inflation comes with a cosmological smoking gun; chiral, non-Gaussian, and blue-tilted gravitational wave background, which can be probed by future CMB missions and laser interferometer detectors.


2000 ◽  
Vol 15 (26) ◽  
pp. 1605-1610 ◽  
Author(s):  
J. PASUPATHY

The assumption that the ratio of the Higgs self-coupling to the square of its Yukawa coupling to the top is (almost) independent of the renormalization scale fixes the Higgs mass within narrow limits at m H =160 GeV using only the values of gauge couplings and top mass.


2018 ◽  
Vol 33 (34) ◽  
pp. 1845013
Author(s):  
Oleg Antipin ◽  
Blaženka Melić

We revisit the decoupling effects associated with heavy particles in the renormalization group running of the vacuum energy in a mass-dependent renormalization scheme. We find the running of the vacuum energy stemming from the Higgs condensate in the entire energy range and show that it behaves as expected from the simple dimensional arguments, meaning that it exhibits the quadratic sensitivity to the mass of the heavy particles in the infrared regime. The consequence of such a running to the fine-tuning problem with the measured value of the Cosmological Constant is analyzed and the constraint on the mass spectrum of a given model is derived. We show that in the Standard Model (SM) this fine-tuning constraint is not satisfied while in the massless theories this constraint formally coincides with the well-known Veltman condition. We also provide a remarkably simple extension of the SM where saturation of this constraint enables us to predict the radiative Higgs mass correctly. Generalization to constant curvature spaces is also given.


2021 ◽  
Vol 2021 (12) ◽  
pp. 047
Author(s):  
Felipe F. Freitas ◽  
Carlos A.R. Herdeiro ◽  
António P. Morais ◽  
António Onofre ◽  
Roman Pasechnik ◽  
...  

Abstract We construct families, and concrete examples, of simple extensions of the Standard Model that can yield ultralight real or complex vectors or scalars with potential astrophysical relevance. Specifically, the mass range for these putative fundamental bosons (∼ 10-10-10-20 eV) would lead dynamically to both new non-black hole compact objects (bosonic stars) and new non-Kerr black holes, with masses of ∼ M⊙ to ∼ 1010 M⊙, corresponding to the mass range of astrophysical black hole candidates (from stellar mass to supermassive). For each model, we study the properties of the mass spectrum and interactions after spontaneous symmetry breaking, discuss its theoretical viability and caveats, as well as some of its potential and most relevant phenomenological implications linking them to the physics of compact objects.


Author(s):  
Michael E. Peskin

This chapter discusses the Higgs boson, the spin-0 particle in the Standard Model most closely associated with its spontaneous symmetry breaking. It gives the predictions of the Standard Model for the production and decay of Higgs bosons. It describes the experiments at the Large Hadron Collider that test these predictions.


2002 ◽  
Vol 17 (03) ◽  
pp. 335-346 ◽  
Author(s):  
B. ANANTHANARAYAN ◽  
J. PASUPATHY

Plausible interrelations between parameters of the standard model are studied. The empirical value of the top quark mass, when used in the renormalization group equations, suggests that the ratio of the color SU(3) gauge coupling g3, and the top coupling gt is independent of the renormalization scale. On the other hand, the variety of top-condensate models suggests that the Higgs self-coupling λ is proportional to [Formula: see text]. Invoking the requirement that the ratio [Formula: see text] is independent of the renormalization scale t, fixes the Higgs mass. The pole mass of the Higgs (which differs from the renormalization group mass by a few percent) is found to be ~ 154 GeV for the one-loop equations and ~ 148 GeV for the two-loop equations.


1999 ◽  
Vol 14 (24) ◽  
pp. 1673-1686 ◽  
Author(s):  
P. CEA ◽  
M. CONSOLI ◽  
L. COSMAI ◽  
P. M. STEVENSON

Using a high-statistics lattice simulation of the Ising limit of (λΦ4)4 theory, we have measured the susceptibility and propagator in the broken phase. We confirm our earlier finding of a discrepancy between the field rescaling implied by the propagator data and that implied by the susceptibility. The discrepancy becomes worse as one goes closer to the continuum limit; thus, it cannot be explained by residual perturbative effects. The data are consistent with an unconventional description of symmetry breaking and "triviality" in which the rescaling factor for the finite-momentum fluctuations tends to unity, but the rescaling factor for the condensate becomes larger and larger as one approaches the continuum limit. In the standard model this changes the interpretation of the Fermi-constant scale and its relation to the Higgs mass.


Author(s):  
Davide Meloni ◽  
Tommy Ohlsson ◽  
Marcus Pernow

AbstractDespite the successes of the Standard Model of particle physics, it is known to suffer from a number of deficiencies. Several of these can be addressed within non-supersymmetric theories of grand unification based on $$\text {SO}(10)$$ SO ( 10 ) . However, achieving gauge coupling unification in such theories is known to require additional physics below the unification scale, such as symmetry breaking in multiple steps. Many such models are disfavored due to bounds on the proton lifetime. Corrections arising from threshold effects can, however, modify these conclusions. We analyze all seven relevant breaking chains with one intermediate symmetry breaking scale, assuming the “survival hypothesis” for the scalar masses. Two are allowed by proton lifetime and two are disfavored by a failure to unify the gauge couplings. The remaining three unify at a too low scale, but can be salvaged by various amounts of threshold corrections. We parametrize this and thereby rank the models by the size of the threshold corrections required to save them.


2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Gordon Kane

Spontaneous symmetry breaking has led physicists to possible solutions that extend the Standard Model theory to include gravity and dark matter candidates.


Sign in / Sign up

Export Citation Format

Share Document