scholarly journals D-BRANE WORLDS AND THE COSMOLOGICAL CONSTANT

2006 ◽  
Vol 21 (03) ◽  
pp. 213-229
Author(s):  
P. GUSIN ◽  
J. WARCZEWSKI

The cosmological constant on a D-brane is analyzed. This D-brane is in the background produced by the p-brane solutions. The energy–momentum tensor in this model has been found and the form of the cosmological constant has been derived. This energy–momentum tensor is interpreted as an energy–momentum tensor for a perfect fluid on the D-brane. The energy density and the pressure for this fluid have been derived. As it turned out the pressure is negative but the speed of sound is real.

2020 ◽  
Vol 29 (14) ◽  
pp. 2043029
Author(s):  
Marius Oltean ◽  
Hossein Bazrafshan Moghaddam ◽  
Richard J. Epp

Quasilocal definitions of stress-energy–momentum—that is, in the form of boundary densities (in lieu of local volume densities) — have proven generally very useful in formulating and applying conservation laws in general relativity. In this Essay, we take a basic look into applying these to cosmology, specifically using the Brown–York quasilocal stress-energy–momentum tensor for matter and gravity combined. We compute this tensor and present some simple results for a flat FLRW spacetime with a perfect fluid matter source. We emphasize the importance of the vacuum energy, which is almost universally underappreciated (and usually “subtracted”), and discuss the quasilocal interpretation of the cosmological constant.


2022 ◽  
Vol 9 ◽  
Author(s):  
Uday Chand De ◽  
Sameh Shenawy ◽  
H. M. Abu-Donia ◽  
Nasser Bin Turki ◽  
Suliman Alsaeed ◽  
...  

The main object of this paper is to investigate spacetimes admitting concircular curvature tensor in f(R) gravity theory. At first, concircularly flat and concircularly flat perfect fluid spacetimes in fR gravity are studied. In this case, the forms of the isotropic pressure p and the energy density σ are obtained. Next, some energy conditions are considered. Finally, perfect fluid spacetimes with divergence free concircular curvature tensor in f(R) gravity are studied; amongst many results, it is proved that if the energy-momentum tensor of such spacetimes is recurrent or bi-recurrent, then the Ricci tensor is semi-symmetric and hence these spacetimes either represent inflation or their isotropic pressure and energy density are constants.


Author(s):  
Deep Bhattacharjee

Chronology unprotected mechanisms are considered with a very low gravitational polarization to make the wormhole traversal with positive energy density everywhere. No need of exotic matter has been considered with the assumption of the Einstein-Dirac-Maxwell Fields, encountering above the non-zero stress-energy-momentum tensor through spacelike hypersurfaces by a hyperbolic coordinate shift.


Author(s):  
Ibrahim Gullu ◽  
S. Habib Mazharimousavi ◽  
S. Danial Forghani

A spherical planetary nebula is described as a geometric model. The nebula itself is considered as a thin-shell, which is visualized as a boundary of two spacetimes. The inner and outer curvature tensors of the thin-shell are found in order to get an expression of the energy-momentum tensor on the thin-shell. The energy density and pressure expressions are derived using the energy-momentum tensor. The time evolution of the radius of the thin-shell is obtained in terms of the energy density. The model is tested by using a simple power function for decreasing energy density and the evolution pattern of the planetary nebula is attained.


Author(s):  
Z. Yousaf ◽  
M. Z. Bhatti

We explore the aspects of the electromagnetism on the stability of gravastar in a particular modified theory, i.e. [Formula: see text] where [Formula: see text], [Formula: see text] is the Ricci scalar and [Formula: see text] is the trace of energy–momentum tensor. We assume a spherically symmetric static metric coupled comprising of perfect fluid in the presence of electric charge. The purpose of this paper is to extend the results of [S. Ghosh, F. Rahaman, B. K. Guha and S. Ray, Phys. Lett. B 767 (2017) 380.] to highlight the effects of [Formula: see text] gravity in the formation of charged gravastars. We demonstrated the mathematical formulation, utilizing different equations of state, for the three respective regions (i.e. inner, shell, exterior) of the gravastar. We have matched smoothly the interior de Sitter and the exterior Reissner–Nordström metric at the hypersurface. At the end we extracted few conclusions by working on the physical features of the charged gravastar, mathematically and graphically.


2019 ◽  
Vol 34 (11) ◽  
pp. 1950082 ◽  
Author(s):  
M. Ilyas ◽  
Z. Yousaf ◽  
M. Z. Bhatti

This paper studies the viable regions of some cosmic models in a higher derivative [Formula: see text] theory with the help of energy conditions (where [Formula: see text], [Formula: see text] and [Formula: see text] are the Ricci scalar, d’Alembert’s operator and trace of energy–momentum tensor, respectively). For this purpose, we assume a flat Friedmann–Lemaître–Robertson–Walker metric which is assumed to be filled with perfect fluid configurations. We take two distinct realistic models that might be helpful to explore stable regimes of cosmological solutions. After taking some numerical values of cosmic parameters, like crackle, snap, jerk (etc.) as well as viable constraints from energy conditions, the viable zones for the under observed [Formula: see text] models are examined.


2003 ◽  
Vol 12 (06) ◽  
pp. 1095-1112 ◽  
Author(s):  
METIN ARIK ◽  
OZGUR DELICE

We present cylindrically symmetric, static solutions of the Einstein field equations around a line singularity such that the energy momentum tensor corresponds to infinitely thin photonic shells. Positivity of the energy density of the thin shell and the line singularity is discussed. It is also shown that thick shells containing mostly radiation are possible in a numerical solution.


2017 ◽  
Vol 26 (12) ◽  
pp. 1743026
Author(s):  
Asher Yahalom

Stability analysis plays a major rule in our understanding of nature. For example it was shown that among empty flat spacetimes only those with a Lorentzian metric are stable [A. Yahalom, Found Phys. 38 (2008) 489–497; Int. J. Mod. Phys. D 18(4) (2009) 2155–2158]. However, the universe is not empty and the energy momentum tensor is metric dependent an thus effects stability. In this essay we concentrate on simple perturbations of the standard cosmological model with and without cosmological constant which is based on a uniform mass distribution. The results suggest that while Euclidean, open or closed section models are valid solutions, the choice of stable solutions is limited. In particular, the popular Lambda-CDM model is unstable.


2009 ◽  
Vol 24 (08n09) ◽  
pp. 1505-1509 ◽  
Author(s):  
JOSE EDGAR MADRIZ AGUILAR ◽  
CARLOS ROMERO

In this talk notes we expose the possibility to induce the cosmological constant from extra dimensions from a geometrical framework where our four-dimensional Riemannian spacetime is embedded into a five-dimensional Weyl integrable space. In particular following the approach of the induced matter theory (IMT) we show that when we go down from five to four dimensions we may recover the induced energy momentum tensor of the IMT plus a cosmological constant term that is determined by the presence of the Weyl scalar field on the bulk.


2013 ◽  
Vol 28 (32) ◽  
pp. 1350141 ◽  
Author(s):  
A. F. SANTOS

In this paper, we study Gödel universe in the framework of f(R, T) modified theories of gravity, where R is the curvature scalar and T the trace of the energy–momentum tensor. We demonstrate that Gödel solution occurs in this modified theory and still we suggest a path to understanding the smallness of the cosmological constant.


Sign in / Sign up

Export Citation Format

Share Document