scholarly journals AXION SEARCH WITH Q & A EXPERIMENT

2010 ◽  
Vol 25 (11n12) ◽  
pp. 983-993 ◽  
Author(s):  
◽  
HSIEN-HAO MEI ◽  
WEI-TOU NI ◽  
SHENG-JUI CHEN ◽  
SHEAU-SHI PAN

Dark matter is a focused issue in galactic evolution and cosmology. Axion is a viable particle candidate for dark matter. Its interaction with photon is an effective way to detect it, e.g., pseudoscalar-photon interaction will generate vacuum dichroism in a magnetic field. Motivated to measure the QED vacuum birefringence and to detect pseudoscalar-photon interaction, we started to build up the Q & A experiment (QED [Quantum Electrodynamics] and Axion experiment) in 1994. In this talk, we first give a brief historical account of planet hunting and dark matter evidence. We then review our 3.5 m Fabry-Perot interferometer together with our results of measuring vacuum dichroism and gaseous Cotton-Mouton effects. Our first results give (-0.2 ± 2.8) × 10-13 rad/pass, at 2.3 T with 18,700 passes through a 0.6 m long magnet, for vacuum dichroism measurement. We are upgrading our interferometer to 7 m arm-length with a new 1.8 m 2.3 T permanent magnet capable of rotation up to 13 cycles per second. We aim at [Formula: see text] optical sensitivity with 532 nm cavity finesse around 100,000. When achieved, vacuum dichroism would be measured to 8.6 × 10-17 rad/pass in about 50 days, and QED birefringence would be measured to 28%.

2007 ◽  
Vol 22 (37) ◽  
pp. 2815-2831 ◽  
Author(s):  
SHENG-JUI CHEN ◽  
HSIEN-HAO MEI ◽  
WEI-TOU NI

A number of experiments are underway to detect vacuum birefringence and dichroism — PVLAS, Q & A, and BMV. Recently, PVLAS experiment has observed optical rotation in vacuum by a magnetic field (vacuum dichroism). Theoretical interpretations of this result include a possible pseudoscalar–photon interaction and the existence of millicharged fermions. Here, we report the progress and first results of Q & A (QED [quantum electrodynamics] and Axion) experiment proposed and started in 1994. We use a 3.5-m high-finesse (around 30,000) Fabry–Perot prototype detector extendable to 7-m with the cavity mirrors suspended using X-pendulum-double pendulums. To polarize the vacuum, we use a 2.3-T dipole permanent magnet rotated at 5–10 rev/s, with 27-mm-diameter clear borehole and 0.6-m field length. Our ellipsometer/polarization-rotation-detection-system is formed by a pair of Glan–Taylor type polarizing prisms with extinction ratio lower than 10-8 together with a polarization modulating Faraday Cell with/without a quarter wave plate. Our first results give (-0.2 ± 2.8) × 10-13 rad/pass with 18,700 passes through a 2.3 T 0.6 m long magnet for vacuum dichroism measurement. We present our experimental limit on pseudo-scalar-photon interaction and millicharged fermions.


1995 ◽  
Vol 10 (28) ◽  
pp. 2125-2134 ◽  
Author(s):  
T.C.P. CHUI ◽  
M. SHAO ◽  
D. REDDING ◽  
Y. GURSEL ◽  
A. BODEN

Quantum electrodynamics (QED) theory predicts that vacuum under the influence of a strong magnetic field is birefringence. Recently, several groups have proposed to used a high finesse Fabry—Perot cavity to increase the average path length of the light in the magnetic field. This together with the state-of-the-art dipole magnets, should bring the effect within reach of observation. However, the mirrors used in the FP are known to have intrinsic birefringence which is of orders of magnitude larger than the birefringence of the vacuum. In this letter, we analyze the effect of uncontrollable variations of mirror birefringence on two recently proposed optical schemes. The first scheme,1 which we called the frequency scheme, is based on measurement of the beat frequency of two orthogonal polarized laser beams in the cavity. We show that mirror birefringence contributes to the detection uncertainties in first order, resulting in a high susceptibility to variations of its value. In the second scheme, which we called the polarization scheme, laser polarized at 45° relative to the B-field is injected into the cavity. The ellipticity and polarization rotation of the light exiting the cavity is measured.2 Under this scheme, mirror birefringence contributes as a correction of the QED effect, greatly reducing its sensitivity to the undesirable changes.


2008 ◽  
Vol 78 (10) ◽  
Author(s):  
J. Lavalle ◽  
E. Nezri ◽  
E. Athanassoula ◽  
F.-S. Ling ◽  
R. Teyssier

2001 ◽  
Vol 19 (10/12) ◽  
pp. 1259-1272 ◽  
Author(s):  
D. A. Gurnett ◽  
R. L. Huff ◽  
J. S. Pickett ◽  
A. M. Persoon ◽  
R. L. Mutel ◽  
...  

Abstract. In this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1) whistlers, (2) chorus, and (3) auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The frequency-time structure of this radiation usually shows a very good one-to-one correspondence between the various spacecraft. By using the microsecond timing available at the NASA Deep Space Net-work, very-long-baseline radio astronomy techniques have been used to determine the source of the auroral kilometric radiation. One event analyzed using this technique shows a very good correspondence between the inferred source location, which is assumed to be at the electron cyclotron frequency, and a bright spot in the aurora along the magnetic field line through the source.Key words. Ionosphere (wave-particle interactions; wave propagation) – Magnetospheric physics (plasma waves and instabilities; instruments and techniques)


1992 ◽  
Vol 01 (01) ◽  
pp. 51-72 ◽  
Author(s):  
Y.J. DING ◽  
A.E. KAPLAN

The photon-photon scattering predicted by quantum electrodynamics can give rise to second-harmonic generation of intense laser radiation in a dc magnetic field due to broken symmetry of interaction even in the “box” diagram approximation. This effect is possible only when the field system (i.e. optical wave+dc field) is inhomogeneous, in particular when a Gaussian laser beam (i.e. nonplane wave) propagates in either homogeneous or inhomogeneous dc magnetic field.


2014 ◽  
Vol 22 (16) ◽  
pp. 19581 ◽  
Author(s):  
Peng Zhang ◽  
Ming Tang ◽  
Feng Gao ◽  
Benpeng Zhu ◽  
Songnian Fu ◽  
...  

Author(s):  
Jianglai Liu

Dark matter, an invisible substance which constitutes 85% of the matter in the observable universe, is one of the greatest puzzles in physics and astronomy today. Dark matter can be made of a new type of fundamental particle, not yet observed due to its feeble interactions with visible matter. In this talk, we present the first results of PandaX-4T, a 4-ton-scale liquid xenon dark matter observatory, searching for these dark matter particles from deep underground. We will briefly summarize the performance of PandaX-4T, introduces details in the data analysis, and present the latest search results on dark matter-nucleon interactions.


2021 ◽  
Vol 41 (1) ◽  
pp. 0127001
Author(s):  
张天才 Zhang Tiancai ◽  
毋伟 Wu Wei ◽  
杨鹏飞 Yang Pengfei ◽  
李刚 Li Gang ◽  
张鹏飞 Zhang Pengfei

Sign in / Sign up

Export Citation Format

Share Document