scholarly journals PROBING THE CENTRAL BLACK HOLE IN M87 WITH GAMMA-RAYS

2012 ◽  
Vol 27 (28) ◽  
pp. 1230030 ◽  
Author(s):  
FRANK M. RIEGER ◽  
FELIX AHARONIAN

Recent high-sensitivity observation of the nearby radio galaxy M87 has provided important insights into the central engine that drives the large-scale outflows seen in radio, optical and X-rays. This review summarizes the observational status achieved in the high energy (HE < 100 GeV) and very high energy (VHE > 100 GeV) gamma-ray domains, and discusses the theoretical progress in understanding the physical origin of this emission and its relation to the activity of the central black hole.

1995 ◽  
Vol 10 (38) ◽  
pp. 2897-2913
Author(s):  
DAVID B. CLINE

We provide a brief review of the current situation concerning gamma ray bursts, with emphasis on the role that particle physics may play in the interesting phenomena. The current understanding of GRB origins allows for a large range of physical processes from primordial black hole evaporation to neutron star and black hole collisions. There does not seem to be a simple standard luminosity function and the burst times range from ms to 1000 s of seconds five orders of magnitude. It is likely that some type of fireball model is needed to explain the GRBs. No counterparts of GRB have been detected. We indicate some ways in which progress can be made in either the study of the fine time structure (~μs) or the detection of very high energy photons (>100 GeV to >100 TeV). We also indicate how a small but unique class of the GRB could come from primordial black hole evaporation.


1994 ◽  
Vol 159 ◽  
pp. 380-380
Author(s):  
G. Matt ◽  
A.C. Fabian ◽  
R.R. Ross

The presence of iron lines and high energy excesses in the X-ray spectra of Seyfert galaxies has been firmly established by Ginga (e.g. Nandra & Pounds 1993 and references therein). These features are generally interpreted as signatures of the reprocessing of the primary X-rays by matter in the neighbourhood of the central black hole, probably distributed in an accretion disc (Lightman & White 1988, George & Fabian 1991, Matt, Perola & Piro 1991).


2007 ◽  
Vol 665 (1) ◽  
pp. L51-L54 ◽  
Author(s):  
J. Albert ◽  
E. Aliu ◽  
H. Anderhub ◽  
P. Antoranz ◽  
A. Armada ◽  
...  

2007 ◽  
Vol 2007 (04) ◽  
pp. 013-013 ◽  
Author(s):  
A Cuoco ◽  
S Hannestad ◽  
T Haugbølle ◽  
G Miele ◽  
P D Serpico ◽  
...  

2014 ◽  
Vol 1 (1) ◽  
pp. 227-230
Author(s):  
Matthias Beilicke

The galactic center has long been a region of interest for high-energy and very-high-energy observations. Many potential sources of GeV/TeV gamma-ray emission are located in this region, e.g. the accretion of matter onto the central black hole, cosmic rays from a nearby shell-type supernova remnant, or the annihilation of dark matter. The galactic center has been detected at MeV/GeV energies by EGRET and recently by <em>Fermi</em>/LAT. At TeV energies, the galactic center was detected at the level of 4 standard deviations with the Whipple 10m telescope and with one order of magnitude better sensitivity by H.E.S.S. and MAGIC. We present the results from 3 years of VERITAS galactic center observations conducted at large zenith angles. The results are compared to astrophysical models.


2003 ◽  
Vol 18 (07) ◽  
pp. 477-489
Author(s):  
SAUL BARSHAY ◽  
GEORG KREYERHOFF

We consider a speculative model for gamma-ray bursts (GRB), which predicts that the total kinetic energy in the ejected matter is less than the total energy in the gamma rays. There is also secondary energy in X-rays, which are emitted contemporaneously with the gamma rays. The model suggests that bremsstrahlung and Compton up-scattering by very energetic electrons, are important processes for producing the observed burst radiation. The dynamics naturally allows for the possibility of a moderate degree of beaming of matter and radiation in some gamma-ray bursts. GRB are predicted to have an intrinsically wide distribution in total energies, in particular, on the low side. They are predicted to occur at large redshifts, z ~ 8, in local regions of dense matter.


2019 ◽  
Vol 489 (2) ◽  
pp. 2403-2416 ◽  
Author(s):  
Maxim Lyutikov ◽  
Tea Temim ◽  
Sergey Komissarov ◽  
Patrick Slane ◽  
Lorenzo Sironi ◽  
...  

ABSTRACT We outline a model of the Crab pulsar wind nebula with two different populations of synchrotron emitting particles, arising from two different acceleration mechanisms: (i) Component-I due to Fermi-I acceleration at the equatorial portion of the termination shock, with particle spectral index pI ≈ 2.2 above the injection break corresponding to γwindσwind ∼ 105, peaking in the ultraviolet (UV, γwind ∼ 102 is the bulk Lorentz factor of the wind, σwind ∼ 103 is wind magnetization); and (ii) Component-II due to acceleration at reconnection layers in the bulk of the turbulent Nebula, with particle index pII ≈ 1.6. The model requires relatively slow but highly magnetized wind. For both components, the overall cooling break is in the infrared at ∼0.01 eV, so that the Component-I is in the fast cooling regime (cooling frequency below the peak frequency). In the optical band, Component-I produces emission with the cooling spectral index of αo ≈ 0.5, softening towards the edges due to radiative losses. Above the cooling break, in the optical, UV, and X-rays, Component-I mostly overwhelms Component-II. We hypothesize that acceleration at large-scale current sheets in the turbulent nebula (Component-II) extends to the synchrotron burn-off limit of ϵs ∼ 100 MeV. Thus in our model acceleration in turbulent reconnection (Component-II) can produce both hard radio spectra and occasional gamma-ray flares. This model may be applicable to a broader class of high-energy astrophysical objects, like active galactic nuclei and gamma-ray burst jets, where often radio electrons form a different population from the high-energy electrons.


Author(s):  
Philippe Z Yao ◽  
Jason Dexter ◽  
Alexander Y Chen ◽  
Benjamin R Ryan ◽  
George N Wong

Abstract We use the public code ebhlight to carry out 3D radiative general relativistic magnetohydrodynamics (GRMHD) simulations of accretion on to the supermassive black hole in M87. The simulations self-consistently evolve a frequency-dependent Monte Carlo description of the radiation field produced by the accretion flow. We explore two limits of accumulated magnetic flux at the black hole (SANE and MAD), each coupled to several sub-grid prescriptions for electron heating that are motivated by models of turbulence and magnetic reconnection. We present convergence studies for the radiation field and study its properties. We find that the near-horizon photon energy density is an order of magnitude higher than is predicted by simple isotropic estimates from the observed luminosity. The radially dependent photon momentum distribution is anisotropic and can be modeled by a set of point-sources near the equatorial plane. We draw properties of the radiation and magnetic field from the simulation and feed them into an analytic model of gap acceleration to estimate the very high energy (VHE) gamma-ray luminosity from the magnetized jet funnel, assuming that a gap is able to form. We find luminosities of $\rm \sim 10^{41} \, erg \, s^{-1}$ for MAD models and $\rm \sim 2\times 10^{40} \, erg \, s^{-1}$ for SANE models, which are comparable to measurements of M87’s VHE flares. The time-dependence seen in our calculations is insufficient to explain the flaring behaviour. Our results provide a step towards bridging theoretical models of near-horizon properties seen in black hole images with the VHE activity of M87.


Galaxies ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Koji Noda ◽  
Robert Daniel Parsons

Gamma-ray bursts (GRBs) are some of the most energetic events in the Universe and are potential sites of cosmic ray acceleration up to the highest energies. GRBs have therefore been a target of interest for very high energy gamma-ray observatories for many years, leading to the recent discovery of a number of bursts with photons reaching energies above 100 GeV. We summarize the GRB observational campaigns of the current generation of very high energy gamma-ray observatories as well as describing the observations and properties of the GRBs discovered so far. We compare the properties of the very high energy bursts to the total GRB distribution and make predictions for the next generation of very high energy gamma-ray observations.


2006 ◽  
Vol 2 (S238) ◽  
pp. 403-404
Author(s):  
Y. Lu ◽  
Y. F Huang ◽  
Z. Zheng ◽  
S. N. Zhang

AbstractSince the mass-radius relation is quite different for a main sequence (MS) star and a giant (G) star, we find that the radiation efficiencies in the star capture processes by a black hole (BH) are also very different. This may provide a useful way to distinguish the capture of MS and G stars. Comparing with observations of the very high energy (VHE) gamma-ray emissions, we argue the event that triggers the gamma-ray emission in the energy range 4–40 TeV should be a G star capture. On the other hand, the capture of MS stars by the massive BH is required when the measured spectrum of VHE gamma-rays extends from 109 to 1015 eV.


Sign in / Sign up

Export Citation Format

Share Document