scholarly journals Higgs bosons in extra dimensions

2015 ◽  
Vol 30 (15) ◽  
pp. 1540012 ◽  
Author(s):  
Mariano Quiros

In this paper, motivated by the recent discovery of a Higgs-like boson at the Large Hadron Collider (LHC) with a mass mH≃125 GeV , we review different models where the hierarchy problem is solved by means of a warped extra dimension. In the Randall–Sundrum (RS) model electroweak observables provide very strong bounds on the mass of KK modes which motivates extensions to overcome this problem. Two extensions are briefly discussed. One particular extension is based on the deformation of the metric such that it strongly departs from the AdS5 structure in the IR region while it goes asymptotically to AdS5 in the UV brane. This model has the IR brane close to a naked metric singularity (which is outside the physical interval) characteristic of soft-walls constructions. The proximity of the singularity provides a strong wave function renormalization for the Higgs field which suppresses the T and S parameters. The second class of considered extensions are based on the introduction of an extra gauge group in the bulk such that the custodial SU (2)R symmetry is gauged and protects the T parameter. By further enlarging the bulk gauge symmetry one can find models where the Higgs is identified with the fifth component of gauge fields and for which the Higgs potential along with the Higgs mass can be dynamically determined by the Coleman–Weinberg mechanism.

2007 ◽  
Vol 16 (03) ◽  
pp. 841-851 ◽  
Author(s):  
THOMAS J. HUMANIC ◽  
BENJAMIN KOCH ◽  
HORST STÖCKER

The concept of Large Extra Dimensions (LED) provides a way of solving the Hierarchy Problem which concerns the weakness of gravity compared with the strong and electro-weak forces. A consequence of LED is that miniature Black Holes (mini-BHs) may be produced at the Large Hadron Collider in p + p collisions. The present work uses the CHARYBDIS mini-BH generator code to simulate the hadronic signal which might be expected in a mid-rapidity particle tracking detector from the decay of these exotic objects if indeed they are produced. An estimate is also given for Pb + Pb collisions.


2010 ◽  
Vol 2010 (3) ◽  
Author(s):  
Priyotosh Bandyopadhyay ◽  
Biplob Bhattacherjee ◽  
AseshKrishna Datta

Author(s):  
John Campbell ◽  
Joey Huston ◽  
Frank Krauss

At the core of any theoretical description of hadron collider physics is a fixed-order perturbative treatment of a hard scattering process. This chapter is devoted to a survey of fixed-order predictions for a wide range of Standard Model processes. These range from high cross-section processes such as jet production to much more elusive reactions, such as the production of Higgs bosons. Process by process, these sections illustrate how the techniques developed in Chapter 3 are applied to more complex final states and provide a summary of the fixed-order state-of-the-art. In each case, key theoretical predictions and ideas are identified that will be the subject of a detailed comparison with data in Chapters 8 and 9.


2017 ◽  
Vol 32 (34) ◽  
pp. 1746011 ◽  
Author(s):  
C. T. Potter

We describe the phenomenology of light singlet Higgs bosons in the Next-to-Minimal Supersymmetry Model (NMSSM) which are mostly decoupled from the rest of Supersymmetry. Noting that the Large Hadron Collider has not excluded this scenario, we describe previous searches for light Higgs bosons at the Large Electron Positron collider and evaluate the sensitivity to neutralino production and decay to light singlet Higgs bosons at the proposed [Formula: see text] GeV Circular Electron Positron Collider.


Author(s):  
Yu.G. Ignat’ev ◽  
◽  
A.R. Samigullina ◽  

A study and computer simulation of a complete model of the cosmological evolution of a classical scalar field with a Higgs potential is carried out without the assumption that the Hubble constant is nonnegative. It is shown that in most cases of initial conditions the cosmological model passes from the expansion stage to the compression stage. Thus, cosmological models based on the classical Higgs field are unstable with respect to finite perturbations.


2019 ◽  
Author(s):  
Vitaly Kuyukov

This paper analyses a method of producing the Higgs mass via the gravitational field. This approach has become very popular in recent years, as the consideration of other forces do not help in solving the problem of mass hierarchy. Not understand the difference between scales of the standard model and Grand unification theory. Here, we present a heuristic mechanism which eliminated this difference. The idea is that the density of the condensate of the Higgs is increased so that it is necessary to take into account self gravitational potential energy of the Higgs boson. The result is as follows. The mass of the Higgs is directly proportional to the cell density of the Higgs bosons. Or else the mass of the Higgs is inversely proportional to the cell volume, which is the Higgs boson in the condensate. The most interesting dimension of this cell condensation is equal to the scale of Grand unification. This formula naturally combines the scale of the standard model and Grand unification through gravitational condensation.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Junxing Pan ◽  
Jung-Hsin Chen ◽  
Xiao-Gang He ◽  
Gang Li ◽  
Jhih-Ying Su

AbstractIn this work, we study the potential of searching for triply charged Higgs boson originating from a complex Higgs quadruplet in the final state with at least three same-sign leptons. A detailed collider analysis of the SM backgrounds and signals is performed at a 100 TeV pp collider for the triply charged Higgs boson mass below 1 TeV and the Higgs quadruplet vacuum expectation value $$v_\Delta $$ v Δ ranging from $$1.5\times 10^{-9}~\text {GeV}$$ 1.5 × 10 - 9 GeV to $$1.3~\text {GeV}$$ 1.3 GeV and the mass splitting $$\Delta m$$ Δ m between the nearby states of the Higgs quadruplet satisfying $$|\Delta m|\lesssim 30~\text {GeV}$$ | Δ m | ≲ 30 GeV . About $$100~\text {fb}^{-1}$$ 100 fb - 1 of data are required at most for $$5\sigma $$ 5 σ discovery. We also revisit the sensitivity at the Large Hadron Collider (LHC) and find that $$5\sigma $$ 5 σ discovery of the triply charged Higgs boson below 1 TeV can be reached for a relatively small $$v_\Delta $$ v Δ . For example, if $$v_\Delta =10^{-6}~\text {GeV}$$ v Δ = 10 - 6 GeV and $$\Delta m=0$$ Δ m = 0 , the integrated luminosity of $$330~\text {fb}^{-1}$$ 330 fb - 1 is needed. But for a relatively large $$v_\Delta $$ v Δ , i.e., $$v_\Delta \gtrsim 10^{-3}~\text {GeV}$$ v Δ ≳ 10 - 3 GeV , the triply charged Higgs boson above about 800 GeV cannot be discovered even in the high-luminosity LHC era. For $$\Delta m>0$$ Δ m > 0 , the cascade decays are open and the sensitivity can be improved depending on the value of $$v_\Delta $$ v Δ .


1998 ◽  
Vol 13 (32) ◽  
pp. 2601-2611 ◽  
Author(s):  
HISAKI HATANAKA ◽  
TAKEO INAMI ◽  
C. S. LIM

We report on an attempt to solve the gauge hierarchy problem in the framework of higher-dimensional gauge theories. Both classical Higgs mass and quadratically divergent quantum correction to the mass are argued to be vanished. Hence the hierarchy problem in its original sense is solved. The remaining finite mass correction is shown to depend crucially on the choice of boundary condition for matter fields, and a way to fix it dynamically is presented. We also point out that on the simply-connected space S2 even the finite mass correction vanishes.


Sign in / Sign up

Export Citation Format

Share Document