Wormhole in 5D Kaluza–Klein cosmology

2017 ◽  
Vol 32 (07) ◽  
pp. 1750023 ◽  
Author(s):  
Gargi Biswas ◽  
B. Modak

We present wormhole as a solution of Euclidean field equations as well as the solution of the Wheeler–deWitt (WD) equation satisfying Hawking–Page wormhole boundary conditions in (4 + 1)-dimensional Kaluza–Klein cosmology. The wormholes are considered in the cases of pure gravity, minimally coupled scalar (imaginary) field and with a positive cosmological constant assuming dynamical extra-dimensional space. In above cases, wormholes are allowed both from Euclidean field equations and WD equation. The dimensional reduction is possible.

2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Sanjay Oli

We have presented cosmological models in five-dimensional Kaluza-Klein space-time with a variable gravitational constant (G) and cosmological constant (Λ). We have investigated Einstein’s field equations for five-dimensional Kaluza-Klein space-time in the presence of perfect fluid with time dependent G and Λ. A variety of solutions have been found in which G increases and Λ decreases with time t, which matches with current observation. The properties of fluid and kinematical parameters have been discussed in detail.


2009 ◽  
Vol 24 (20) ◽  
pp. 1565-1575 ◽  
Author(s):  
V. LACQUANITI ◽  
G. MONTANI

In this paper we consider the Kaluza–Klein field equations in the presence of a generic 5D matter tensor which is governed by a conservation equation due to 5D Bianchi identities. Following a previous work, we provide a consistent approach to matter where the problem of huge massive modes is removed, without relaxing the compactification hypotheses; therefore we perform the dimensional reduction either for metric fields and for matter, thus identifying a pure 4D tensor term, a 4D vector term and a scalar one. Hence we are able to write down a consistent set of equations for the complete dynamics of matter and fields; with respect to the pure Einstein–Maxwell system we now have two additional scalar fields: the usual dilaton one plus a scalar source term. Some significant scenarios involving these terms are discussed and perspectives for cosmological applications are suggested.


2004 ◽  
Vol 19 (29) ◽  
pp. 5043-5050 ◽  
Author(s):  
YONGGE MA ◽  
JUN WU

A free test particle in five-dimensional Kaluza–Klein space–time will show its electricity in the reduced four-dimensional space–time when it moves along the fifth dimension. In the light of this observation, we study the coupling of a five-dimensional dust field with the Kaluza–Klein gravity. It turns out that the dust field can curve the five-dimensional space–time in such a way that it provides exactly the source of the electromagnetic field in the four-dimensional space–time after the dimensional reduction.


2008 ◽  
Vol 23 (08) ◽  
pp. 1182-1189
Author(s):  
FRANCESCO CIANFRANI ◽  
GIOVANNI MONTANI

We discuss properties of particles and fields in a multi-dimensional space-time, where the geometrization of gauge interactions can be performed. As far as spinors are concerned, we outline how the gauge coupling can be recognized by a proper dependence on extra-coordinates and by the dimensional reduction procedure. Finally applications to the Electro-Weak model are presented.


2002 ◽  
Vol 17 (29) ◽  
pp. 4219-4228 ◽  
Author(s):  
MOSHE CARMELI

We use a Riemannian four-dimensional presentation for gravitation in which the coordinates are distances and velocity rather than the traditional space and time. We solve the field equations and show that there are three possibilities for the Universe to expand. The theory describes the Universe as having a three-phase evolution with a decelerating expansion, followed by a constant and an accelerating expansion, and it predicts that the Universe is now in the latter phase. It is shown, assuming Ωm = 0.245, that the time at which the Universe goes over from a decelerating to an accelerating expansion, occurs at 8.5 Gyr ago, at which time the cosmic radiation temperature was 146K. Recent observations show that the Universe's growth is accelerating. Our theory confirms these recent experimental results. The theory predicts also that now there is a positive pressure in the Universe. Although the theory has no cosmological constant, we extract from it its equivalence and show that Λ = 1.934 × 10-35 s-2. This value of Λ is in excellent agreement with measurements. It is also shown that the three-dimensional space of the Universe is Euclidean, as the Boomerang experiment shows.


2015 ◽  
Vol 12 (10) ◽  
pp. 1550106 ◽  
Author(s):  
Kazuharu Bamba ◽  
Davood Momeni ◽  
Ratbay Myrzakulov

We examine the Kaluza–Klein (KK) dimensional reduction from higher dimensional space-time and the properties of the resultant Bergmann–Wagoner general action of scalar–tensor theories. With the analysis of the perturbations, we also investigate the stability of the anti-de Sitter (AdS) space-time in the (D ∈ 𝒩)-dimensional Einstein gravity with the negative cosmological constant. Furthermore, we derive the conditions for the dimensional reduction to successfully be executed and present the KK compactification mechanism.


Author(s):  
Marta Dudek ◽  
Janusz Garecki

In the paper we show that the general relativity in recent Einstein-Palatini formulation is equivalent to a gauge field. We begin with a bit of information of the Einstein-Palatini formulation and derive Einstein field equations from it. In the next section, we consider general relativity with a positive cosmological constant in terms of the corrected curvature. We show that in terms of the corrected curvature general relativity takes the form typical for a gauge field. Finally, we give a geometrical interpretation of the corrected curvature.


2001 ◽  
Vol 10 (06) ◽  
pp. 905-912 ◽  
Author(s):  
PAUL S. WESSON ◽  
HONGYA LIU

We present technical results which extend previous work and show that the cosmological constant of general relativity is an artefact of the reduction to 4D of 5D Kaluza–Klein theory (or 10D superstrings and 11D supergravity). We argue that the distinction between matter and vacuum is artificial in the context of ND field theory. The concept of a cosmological "constant" (which measures the energy density of the vacuum in 4D) should be replaced by that of a series of variable fields whose sum is determined by a solution of ND field equations in a well-defined manner.


Sign in / Sign up

Export Citation Format

Share Document