scholarly journals Modified inertial mass from information loss

2017 ◽  
Vol 32 (28) ◽  
pp. 1750148 ◽  
Author(s):  
Michael E. McCulloch ◽  
Jaume Giné

A modification of inertia (called MiHsC or quantized inertia) has been proposed that assumes that inertia is caused by Unruh radiation, and that this radiation is made inhomogeneous in space by either Rindler horizons caused by acceleration or the distant Hubble horizon. The former predicts the standard inertial mass, and the latter predicts galaxy rotation without dark matter and cosmic acceleration without dark energy. It is proposed here that this model can be derived in an alternative way by assuming that the sum of mass (M), energy (E) and the information content of horizons (I) is conserved (EMI) so that mass–energy is released in a discrete manner when the area of a Rindler horizon reduces. This model could be tested by looking for the quantization of inertial mass and acceleration at very high accelerations, and may provide an explanation for the cosmological constant problem.

2012 ◽  
Vol 21 (11) ◽  
pp. 1242002 ◽  
Author(s):  
PRITI MISHRA ◽  
TEJINDER P. SINGH

Flat galaxy rotation curves and the accelerating Universe both imply the existence of a critical acceleration, which is of the same order of magnitude in both the cases, in spite of the galactic and cosmic length scales being vastly different. Yet, it is customary to explain galactic acceleration by invoking gravitationally bound dark matter, and cosmic acceleration by invoking a "repulsive" dark energy. Instead, might it not be the case that the flatness of rotation curves and the acceleration of the Universe have a common cause? In this essay we propose a modified theory of gravity. By applying the theory on galactic scales we demonstrate flat rotation curves without dark matter, and by applying it on cosmological scales we demonstrate cosmic acceleration without dark energy.


2008 ◽  
Vol 23 (31) ◽  
pp. 2681-2689
Author(s):  
S. K. SRIVASTAVA ◽  
K. P. SINHA

In the past few years, a possibility is investigated, where curvature itself behaves as a source of dark energy. So, it is natural to think whether curvature can produce dark matter too. It is found that, at classical level, higher-derivative gravity yields curvature inspired particles namely riccions.31 Here, it is probed whether riccion can be a possible source of dark matter. Further, it is found that the late universe accelerates. Here, it is interesting to see that acceleration is obtained from curvature without using any dark energy source of exotic matter.


2016 ◽  
Vol 25 (12) ◽  
pp. 1630031 ◽  
Author(s):  
M. Sami ◽  
R. Myrzakulov

We briefly review the problems and prospects of the standard lore of dark energy. We have shown that scalar fields, in principle, cannot address the cosmological constant problem. Indeed, a fundamental scalar field is faced with a similar problem dubbed naturalness. In order to keep the discussion pedagogical, aimed at a wider audience, we have avoided technical complications in several places and resorted to heuristic arguments based on physical perceptions. We presented underlying ideas of modified theories based upon chameleon mechanism and Vainshtein screening. We have given a lucid illustration of recently investigated ghost-free nonlinear massive gravity. Again, we have sacrificed rigor and confined to the basic ideas that led to the formulation of the theory. The review ends with a brief discussion on the difficulties of the theory applied to cosmology.


2016 ◽  
Vol 31 (24) ◽  
pp. 1650137
Author(s):  
Martiros Khurshudyan

In this paper, we organize a look to nonlinear interacting Ghost dark energy cosmology involving a discussion on the thermodynamics of the Ghost dark energy, when the universe is bounded via the Hubble horizon. One of the ways to study a dark energy model, is to reconstruct thermodynamics of it. Ghost dark energy is one of the models of the dark energy which has an explicitly given energy density as a function of the Hubble parameter. There is an active discussion towards various cosmological scenarios, where the Ghost dark energy interacts with the pressureless cold dark matter (CDM). Recently, various models of the varying Ghost dark energy has been suggested, too. To have a comprehensive understanding of suggested models, we will discuss behavior of the cosmological parameters on parameter-redshift [Formula: see text] plane. Some discussion on Om and statefinder hierarchy analysis of these models is presented. Moreover, up to our knowledge, suggested forms of interaction between the Ghost dark energy and cold dark matter (CDM) are new, therefore, within obtained results, we provide new contribution to previously discussed models available in the literature. Our study demonstrates that the forms of the interactions considered in the Ghost dark energy cosmology are not exotic and the justification of this is due to the recent observational data.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Niels C. M. Martens

AbstractAccording to the standard model of cosmology, $$\Lambda $$ Λ CDM, the mass-energy budget of the current stage of the universe is not dominated by the luminous matter that we are familiar with, but instead by some form of dark matter (and dark energy). It is thus tempting to adopt scientific realism about dark matter. However, there are barely any constraints on the myriad of possible properties of this entity—it is not even certain that it is a form of matter. In light of this underdetermination I advocate caution: we should not (yet) be dark matter realists. The “not(-yet)-realism” that I have in mind is different from Hacking’s (Philos Sci 56 (4), 555–581, 1989) anti-realism, in that it is semantic rather than epistemological. It also differs from the semantic anti-realism of logical empiricism, in that it is naturalistic, such that it may only be temporary and does not automatically apply to all other unobservables (or even just to all other astronomical unobservables, as with Hacking’s anti-realism). The argument is illustrated with the analogy of the much longer history of the concept of a gene, as the current state of the concept of dark matter resembles in some relevant ways that of the early concept of genes.


2013 ◽  
Vol 22 (12) ◽  
pp. 1342006 ◽  
Author(s):  
SALVATORE CAPOZZIELLO ◽  
TIBERIU HARKO ◽  
FRANCISCO S. N. LOBO ◽  
GONZALO J. OLMO

The nonequivalence between the metric and Palatini formalisms of f(R) gravity is an intriguing feature of these theories. However, in the recently proposed hybrid metric-Palatini gravity, consisting of the superposition of the metric Einstein–Hilbert Lagrangian with an [Formula: see text] term constructed à la Palatini, the "true" gravitational field is described by the interpolation of these two nonequivalent approaches. The theory predicts the existence of a light long-range scalar field, which passes the local constraints and affects the galactic and cosmological dynamics. Thus, the theory opens new possibilities for a unified approach, in the same theoretical framework, to the problems of dark energy and dark matter, without distinguishing a priori matter and geometric sources, but taking their dynamics into account under the same standard.


2016 ◽  
Vol 25 (13) ◽  
pp. 1645010 ◽  
Author(s):  
Hyun Seok Yang

We emphasize that noncommutative (NC) spacetime necessarily implies emergent spacetime if spacetime at microscopic scales should be viewed as NC. In order to understand NC spacetime correctly, we need to deactivate the thought patterns that we have installed in our brains and taken for granted for so many years. Emergent spacetime allows a background-independent formulation of quantum gravity that will open a new perspective to resolve the notorious problems in theoretical physics such as the cosmological constant problem, hierarchy problem, dark energy, dark matter and cosmic inflation.


2007 ◽  
Vol 16 (02n03) ◽  
pp. 453-461
Author(s):  
NILZA PIRES ◽  
HIDALYN T. C. M. DE SOUZA

In this work we present preliminary results of an analysis on the evolution of primordial baryonic and dark matter density perturbations. A top-hat hydrodynamic code has been utilized to analyze the evolution of these primordial perturbations, from the beginning of the recombination era until the redshift when the collapse occurs. All the relevant processes are included in the calculations, which includes the effect of a dark energy in the expanding universe. In particular, we find that the perturbations with dark matter collapse at very high redshift, which could explain the existence of old galaxies at high redshift. As a general result we find that the distribution of the non-baryonic dark matter is more concentrated than the baryonic one.


Sign in / Sign up

Export Citation Format

Share Document