Power law expansion of the early universe for a V (a) = kan potential

2018 ◽  
Vol 33 (01) ◽  
pp. 1850005
Author(s):  
Augusto S. Freitas

In a recent paper, He, Gao and Cai [Phys. Rev. D 89, 083510 (2014)], found a rigorous proof, based on analytical solutions of the Wheeler–DeWitt (WDWE) equation, of the spontaneous creation of the universe from nothing. The solutions were obtained from a classical potential [Formula: see text], where [Formula: see text] is the scale factor. In this paper, we present a complementary (to that of He, Gao and Cai) solution to the WDWE equation with [Formula: see text]. I have found an exponential expansion of the true vacuum bubble for all scenarios. In all scenarios, we found a power law behavior of the scale factor result which is in agreement with another studies.

2012 ◽  
Vol 21 (11) ◽  
pp. 1242020 ◽  
Author(s):  
SUJOY KUMAR MODAK ◽  
DOUGLAS SINGLETON

The Friedman–Robertson–Walker (FRW) spacetime exhibits particle creation similar to Hawking radiation of a black hole. In this essay we show that this FRW Hawking radiation leads to an effective negative pressure fluid which can drive an inflationary period of exponential expansion in the early universe. Since the Hawking temperature of the FRW spacetime decreases as the universe expands this mechanism naturally turns off and the inflationary stage transitions to a power law expansion associated with an ordinary radiation-dominated universe.


2021 ◽  
Author(s):  
Ekrem Aydiner ◽  
Isil Basaran Oz ◽  
Tekin Dereli ◽  
Mustafa Sarisaman

Abstract The late time crossover from a power-law to an exponential expansion of the Universe evolution is the major problem in today’s physical cosmology. Unless this critical transition problem is solved, it is not possible to reach a holistic theory of cosmology. In this study, we propose a simple model in the FLRW framework, where dark matter and dark energy interact through a potential. We analytically solve this model and obtain scale factor a(t) from the presented model. Mainly, employing numerical solutions we show that the scale parameter has a hybrid form which includes power and exponential terms. The numerical results clearly show that there is a time crossover tc in the scale factor a(t) curve, which indicates the transition from the power-law to the exponential expansion of the Universe. We fit these unscaled curves and obtain that scale factor behaves as a(t) ∝ t2/3 below t ≤ tc, and as a(t) ∝ exp(H0t) with H0 = 0.4 and H0 = 0.3 for the relatively weak and strong interactions above t > tc, respectively. It is the first time that we explicitly obtain a hybrid scale factor incorporating the power and exponential terms as a(t) ∝ t2/3eH0t . We conclude that the presented model can solve the late time transition problem of the Universe based on dark matter and dark energy interaction. Additionally, we numerically obtain other kinematic parameters depending upon the scale factor. We discuss the limit behaviors of all relevant cosmological parameters. Our results are completely in good agreement with observational data. Finally, we state that this work makes essential steps towards solving a critical outstanding problem of the cosmology, and has a potential to creates a paradigm for future studies in this field.


2021 ◽  
Author(s):  
Ekrem Aydiner ◽  
Isil Basaran-Oz ◽  
Tekin Dereli ◽  
Mustafa Sarisaman

Abstract The late time crossover from matter dominated era (represented power-law evolution) to the dark energy dominated era (represented exponential evolution) of the Universe evolution is the major problem in today’s physical cosmology. Unless this critical transition problem is solved, it is not possible to reach a holistic theory of cosmology. To explain this critical transition we propose a new model where the dark matter and dark energy interacting through a potential. Based on the FLRW framework we analytically solve this model and obtain the scale factor a(t). In addition, we numerically compute all cosmological quantities. We find more significant results to enlightening the physical mechanism of the critical transition. Firstly, we show that the scale factor a(t) has a hybrid form as a(t) = a0(t/t0) α e ht/t0 . This is main and important result in the presented work, which clearly indicates that the transition from the power-law to the exponential expansion of the Universe. The numerical results clearly provide that there is a time crossover tc in the scale factor a curve, which indicates the transition from the power-law to the exponential expansion of the Universe. Below t/t0 ≤ tc, matter era dominated hence time evolution of the Universe is given by a(t) ∝ (t/t0) α , on the other hand, above t/t0 > tc, the evolution is represented by a(t) ∝ exp(ht/t0). It is first time, the hybrid result for scale factor is exactly obtained from the presented model without use any approximation. Secondly, we fit the scale factor below and above tc. Surprisingly, we find that the scale factor behaves as a(t) ∝ (t/t0) 2/3 below t/t0 ≤ tc, and as a(t) ∝ exp(ht/t0) which indicates that the Hubble parameter takes the value in the interval of the around H0 = 69.5 and H0 = 73.5 km s−1Mpc−1 depend on the weak and strong interactions between dark components above t/t0 > tc, respectively. These are remarkable that α = 2/3 is completely consistent exact solution of the FLRW and re-scaled Hubble parameter H0 is the observable intervals given by Planck, CMB and SNIa data (or other combinations) for chosen interaction values are purely consistent with cosmological observations. Thirdly, we find from the model the transition point from matter dominated era to the dark energy dominated era in the cosmic time is the t0 = 9.8 Gyear which is consistent with the theoretical solution and observations. Additionally, we numerically obtain and analyse other cosmological quantities such as dimensionless Hubble parameter h, deceleration parameter q, jerk parameter j and EoS parameter w. We show that all cosmological quantities of this model are consistent observational results for the matter and dark energy dominated eras. As a result, we consider late time crossover of the Universe, we propose an interacting dark matter and dark energy model, we show that this model can explain the late time crossover phenomena of the Universe and our solutions are very good consistent with theoretical and observational results. Finally, we state that this work makes essential steps towards solving a critical outstanding problem of the cosmology, and has a potential to creates a paradigm for future studies in this field. Furthermore, the model also sheds light on the interaction mechanism of dark matter and dark energy in the Universe.


2021 ◽  
Author(s):  
EKREM AYDINER ◽  
Isil Oz ◽  
Tekin Dereli ◽  
Mustafa Sarisaman

Abstract The late time crossover from a power-law to an exponential expansion of the Universe evolution is the major problem in today’s physical cosmology. Unless this critical transition problem is solved, it is not possible to reach a holistic theory of cosmology. In this study, we propose a simple model in the FLRW framework, where dark matter and dark energy interact through a potential. We analytically solve this model and obtain scale factor a(t) from the presented model. Mainly, employing numerical solutions we show that the scale parameter has a hybrid form which includes power and exponential terms. The numerical results clearly show that there is a time crossover tc in the scale factor a(t) curve, which indicates the transition from the power-law to the exponential expansion of the Universe. We fit these unscaled curves and obtain that scale factor behaves as a(t) ∝ t 2/3 below t ≤ tc, and as a(t) ∝ exp(H0t) with H0 = 0.4 and H0 = 0.3 for the relatively weak and strong interactions above t > tc, respectively. It is the first time that we explicitly obtain a hybrid scale factor incorporating the power and exponential terms as a(t) ∝ t 2/3 e H0t . We conclude that the presented model can solve the late time transition problem of the Universe based on dark matter and dark energy interaction. Additionally, we numerically obtain other kinematic parameters depending upon the scale factor. We discuss the limit behaviors of all relevant cosmological parameters. Our results are completely in good agreement with observational data. Finally, we state that this work makes essential steps towards solving a critical outstanding problem of the cosmology, and has a potential to creates a paradigm for future studies in this field.


1998 ◽  
Vol 13 (05) ◽  
pp. 347-351 ◽  
Author(s):  
MURAT ÖZER

We attempt to treat the very early Universe according to quantum mechanics. Identifying the scale factor of the Universe with the width of the wave packet associated with it, we show that there cannot be an initial singularity and that the Universe expands. Invoking the correspondence principle, we obtain the scale factor of the Universe and demonstrate that the causality problem of the standard model is solved.


1986 ◽  
Vol 119 ◽  
pp. 509-510
Author(s):  
C. Sivaram

Recently it has been shown that many of the puzzling features of conventional cosmological models (such as the horizon and flatness problems) could be explained by invoking inflationary models of the early universe with an exponential expansion phase at very early epochs. These models have the added advantage that they are able to make a definite prediction about the present matter density in the universe, i.e. they require that the density be exactly equal to the closure density which in turn can be easily estimated from the Hubble constant now known to within a factor of two. Now if one goes back to an earlier idea that explored the possibility of unusual clustering of quasar redshifts around z = 2 or 3, we get an example of another cosmological model with a definite prediction for the present overall matter density. This is a modified version of the Eddington-Lemaitre type of model which naturally accommodates such features as a clustering of quasars at certain epochs. From these models one can get a prediction for the present matter density which would be an involved function of the Hubble constant and the redshifts at which such clustering occurs. It can be shown that if such clustering had occurred at any z, the present matter density predicted would be substantially smaller than the corresponding closure density. The conclusion is that any clustering of quasar redshifts is incompatiable with inflationary universe models, indirectly providing observational support for these new theories.


Author(s):  
Gabriel W. Joseph ◽  
Ali Övgün

In a bid to resolve lingering problems in cosmology, more focus is being tilted towards cosmological models in which physical constants of nature are not necessarily real constants, but varying with cosmic time. In this paper we have study cosmology in nonlinear electrodynamics with the Newton's gravitational constant $G$ not a constant but vary in form of power-law of the scale factor of the universe. The evolution of the scale factor $a (t)$ is studied in this model which depends on nonlinear electrodynamics fine tuning term of $\alpha$. Then we check the stability of the model using the speed of sound.


2009 ◽  
Vol 24 (23) ◽  
pp. 1847-1856 ◽  
Author(s):  
SHRI RAM ◽  
M. K. VERMA ◽  
MOHD ZEYAUDDIN

In this paper, a spatially homogeneous and anisotropic Bianchi type V model filled with an imperfect fluid with both viscosity and heat conduction is investigated within the framework of Lyra's geometry. Exact solutions of the field equations are obtained by applying a special law of variation for Hubble's parameter which yields a constant value of the deceleration parameter. Two different physically viable models of the universe are presented in two types of cosmologies, one with power-law expansion and other one with exponential expansion. Cosmological model with power-law expansion has an initial big-bang type singularity at t = 0 whereas the model with exponential expansion has a singularity in the infinite past. The physical and dynamical properties of the models are discussed.


Author(s):  
Tista Mukherjee ◽  
Madhurima Pandey ◽  
Debasish Majumdar ◽  
Ashadul Halder

The recent results of IceCube Neutrino Observatory include an excess of PeV neutrino events which appear to follow a broken power-law different from the other lower energy neutrinos detected by IceCube. The possible astrophysical source of these neutrinos is still unknown. One possible source of such neutrinos could be the decay of nonthermal, long-lived heavy mass dark matter, whose mass should be [Formula: see text] GeV and could have produced at the very early Universe. They can undergo cascading decay via both hadronic and leptonic channels to finally produce such high energy neutrinos. This possibility has been explored in this work by studying the decay flux of these dark matter candidates. The mass and lifetime of such dark matter particles have been obtained by performing a [Formula: see text] fit with the PeV neutrino data of IceCube. We finally estimate the baryon asymmetry produced in the Universe due to such dark matter decay.


1993 ◽  
Vol 08 (36) ◽  
pp. 3413-3427 ◽  
Author(s):  
ATUSHI ISHIKAWA ◽  
TOSHIKI ISSE

The stability of the minisuperspace model of the early universe is studied by solving the Wheeler-DeWitt equation numerically. We consider a system of Einstein gravity with a scalar field. When we solve the Wheeler-DeWitt equation, we pick up some inhomogeneous wave modes from infinite wave modes adequately: degrees of freedom of the superspace are restricted to finite. We show that the minisuperspace is stable when a scale factor (a) of the universe is a few times larger than the Planck length, while it becomes unstable when a is comparable to the Planck length.


Sign in / Sign up

Export Citation Format

Share Document