TESTING THE BETHE ANSATZ FOR STRAIGHT STRINGS IN (2 + 1) DIMENSIONS

1990 ◽  
Vol 05 (27) ◽  
pp. 2231-2239 ◽  
Author(s):  
PETER ORLAND

The general quantum theory of nonrelativistic, infinitely long straight strings of one flavor interacting via a three-body infinitesimal range potential is considered in (2 + 1) dimensions. It is proved that the tetrahedron equation of Zamolodchikov is satisfied only when the potential is either zero or infinitely repulsive. Therefore the Bethe ansatz is valid only for these special cases.

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 163
Author(s):  
Karl Hess

This review is related to the Einstein-Bohr debate and to Einstein–Podolsky–Rosen’s (EPR) and Bohm’s (EPRB) Gedanken-experiments as well as their realization in actual experiments. I examine a significant number of papers, from my minority point of view and conclude that the well-known theorems of Bell and Clauser, Horne, Shimony and Holt (CHSH) deal with mathematical abstractions that have only a tenuous relation to quantum theory and the actual EPRB experiments. It is also shown that, therefore, Bell-CHSH cannot be used to assess the nature of quantum entanglement, nor can physical features of entanglement be used to prove Bell-CHSH. Their proofs are, among other factors, based on a statistical sampling argument that is invalid for general physical entities and processes and only applicable for finite “populations”; not for elements of physical reality that are linked, for example, to a time-like continuum. Bell-CHSH have, furthermore, neglected the subtleties of the theorem of Vorob’ev that includes their theorems as special cases. Vorob’ev found that certain combinatorial-topological cyclicities of classical random variables form a necessary and sufficient condition for the constraints that are now known as Bell-CHSH inequalities. These constraints, however, must not be linked to the observables of quantum theory nor to the actual EPRB experiments for a variety of reasons, including the existence of continuum-related variables and appropriate considerations of symmetry.


2015 ◽  
Vol 15 (7&8) ◽  
pp. 685-693
Author(s):  
Chi-Hang F. Fung ◽  
H. F. Chau ◽  
Chi-Kwong Li ◽  
Nung-Sing Sze

We derive a formula for the time-energy costs of general quantum channels proposed in [Phys. Rev. A {\bf 88}, 012307 (2013)]. This formula allows us to numerically find the time-energy cost of any quantum channel using positive semidefinite programming. We also derive a lower bound to the time-energy cost for any channels and the exact the time-energy cost for a class of channels which includes the qudit depolarizing channels and projector channels as special cases.


Author(s):  
Eric Scerri

In chapter 7, the influence of the old quantum theory on the periodic system was considered. Although the development of this theory provided a way of reexpressing the periodic table in terms of the number of outer-shell electrons, it did not yield anything essentially new to the understanding of chemistry. Indeed, in several cases, chemists such as Irving Langmuir, J.D. Main Smith, and Charles Bury were able to go further than physicists in assigning electronic configurations, as described in chapter 8, because they were more familiar with the chemical properties of individual elements. Moreover, despite the rhetoric in favor of quantum mechanics that was propagated by Niels Bohr and others, the discovery that hafnium was a transition metal and not a rare earth was not made deductively from the quantum theory. It was essentially a chemical fact that was accommodated in terms of the quantum mechanical understanding of the periodic table. The old quantum theory was quantitatively impotent in the context of the periodic table since it was not possible to even set up the necessary equations to begin to obtain solutions for the atoms with more than one electron. An explanation could be given for the periodic table in terms of numbers of electrons in the outer shells of atoms, but generally only after the fact. But when it came to trying to predict quantitative aspects of atoms, such as the ground-state energy of the helium atom, the old quantum theory was quite hopeless. As one physicist stated, “We should not be surprised . . . even the astronomers have not yet satisfactorily solved the three-body problem in spite of efforts over the centuries.” A succession of the best minds in physics, including Hendrik Kramers, Werner Heisenberg, and Arnold Sommerfeld, made strenuous attempts to calculate the spectrum of helium but to no avail. It was only following the introduction of the Pauli exclusion principle and the development of the new quantum mechanics that Heisenberg succeeded where everyone else had failed.


Author(s):  
Alessandro Bisio ◽  
Paolo Perinotti

Higher-order quantum theory is an extension of quantum theory where one introduces transformations whose input and output are transformations, thus generalizing the notion of channels and quantum operations. The generalization then goes recursively, with the construction of a full hierarchy of maps of increasingly higher order. The analysis of special cases already showed that higher-order quantum functions exhibit features that cannot be tracked down to the usual circuits, such as indefinite causal structures, providing provable advantages over circuital maps. The present treatment provides a general framework where this kind of analysis can be carried out in full generality. The hierarchy of higher-order quantum maps is introduced axiomatically with a formulation based on the language of types of transformations. Complete positivity of higher-order maps is derived from the general admissibility conditions instead of being postulated as in previous approaches. The recursive characterization of convex sets of maps of a given type is used to prove equivalence relations between different types. The axioms of the framework do not refer to the specific mathematical structure of quantum theory, and can therefore be exported in the context of any operational probabilistic theory.


1974 ◽  
Vol 21 (2) ◽  
pp. 233-257 ◽  
Author(s):  
B. d’Espagnat

Author(s):  
Hajime Moriya ◽  
Wataru Horiuchi ◽  
Jean-Marc Richard

Three-body correlations in three-body exotic atoms are studied with simple models that consist of three bosons interacting through a superposition of long- and short-range potentials. We discuss the correlations among particles by comparing the energy shifts given by precise three-body calculations and by the Deser-Trueman formula, in which the long- and short-range contributions are factorized. By varying the coupling of the short-range potential, we evaluate the ranges of the strength where the two-body correlations dominate and where the three-body correlations cannot be neglected.


Author(s):  
C. Huang ◽  
Yong-Chang Huang ◽  
Yi-You Nie

This paper derives measurement and identical principles, then makes the two principles into measurement and identical theorems of quantum mechanics, plus the three theorems derived earlier, we deduce the axiom system of current quantum mechanics, the general quantum theory no axiom presumptions not only solves the crisis to understand in current quantum mechanics, but also obtains new discoveries. We deduce the general Schrȍdinger equation of any n particles, and the wave function not only has particle properties of the square root state vector of the classical probability density of any n particles, but also has the plane wave properties of any n particles. Thus, the current crisis of the dispute about the origin of wave-particle duality of any n microscopic particles is solved. This paper displays the classical locality and quantum non-locality for any n particle system, shows entanglement origins, and discovers not only any n-particle wave function system has the original, superposition and across entanglements, but also the entanglements are of interactions preserving conservation or correlation, the three kinds of entanglements directly gives lots of entanglement sources. This paper discovers, one of two pillars of modern physics, quantum mechanics is a generalization ( mechanics ) theory of the square root ( of density function ) of classical statistical mechanics. Thus, all current studies on various entanglements and their uses to quantum computer, quantum communications and so on must be further updated and classified by the three kinds of entanglements. Finally, this papers and our previous paper together solve the crisises of basses of quantum mechanics, e.g., wave-particle duality & the first quantization origins, quantum nonlocality, entanglement origins & classifications, wave collapse and so on.


Sign in / Sign up

Export Citation Format

Share Document