scholarly journals THE c=1 MATRIX MODEL FORMULATION OF TWO-DIMENSIONAL YANG-MILLS THEORIES

1993 ◽  
Vol 08 (33) ◽  
pp. 3201-3214 ◽  
Author(s):  
STEFANO PANZERI

We find the exact matrix model description of two-dimensional Yang-Mills theories on a cylinder or on a torus and with an arbitrary semisimple compact gauge group. This matrix model is the singlet sector of a c=1 matrix model where the matrix field is in the fundamental representation of the gauge group. We also prove that the basic constituents of the theory are Sutherland fermions in the zero coupling limit, and this leads to an interesting connection between two-dimensional gauge theories and one-dimensional integrable systems. In particular we derive for all the classical groups the exact grand canonical partition function of the free fermion system corresponding to a two-dimensional gauge theory on a torus.

2006 ◽  
Vol 03 (01) ◽  
pp. 1-35 ◽  
Author(s):  
JUAN MALDACENA

We consider two-dimensional string backgrounds. We discuss the physics of long strings that come from infinity. These are related to non-singlets in the dual matrix model description.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Wolfgang Mück

Abstract Supersymmetric circular Wilson loops in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills theory are discussed starting from their Gaussian matrix model representations. Previous results on the generating functions of Wilson loops are reviewed and extended to the more general case of two different loop contours, which is needed to discuss coincident loops with opposite orientations. A combinatorial formula representing the connected correlators of multiply wound Wilson loops in terms of the matrix model solution is derived. Two new results are obtained on the expectation value of the circular Wilson loop, the expansion of which into a series in 1/N and to all orders in the ’t Hooft coupling λ was derived by Drukker and Gross about twenty years ago. The connected correlators of two multiply wound Wilson loops with arbitrary winding numbers are calculated as a series in 1/N. The coefficient functions are derived not only as power series in λ, but also to all orders in λ by expressing them in terms of the coefficients of the Drukker and Gross series. This provides an efficient way to calculate the 1/N series, which can probably be generalized to higher-point correlators.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Ashoke Sen

Abstract In a recent paper, Balthazar, Rodriguez and Yin found remarkable agreement between the one instanton contribution to the scattering amplitudes of two dimensional string theory and those in the matrix model to the first subleading order. The comparison was carried out numerically by analytically continuing the external energies to imaginary values, since for real energies the string theory result diverges. We use insights from string field theory to give finite expressions for the string theory amplitudes for real energies. We also show analytically that the imaginary parts of the string theory amplitudes computed this way reproduce the full matrix model results for general scattering amplitudes involving multiple closed strings.


2010 ◽  
Vol 25 (31) ◽  
pp. 5765-5785 ◽  
Author(s):  
GEORGE SAVVIDY

In the recently proposed generalization of the Yang–Mills theory, the group of gauge transformation gets essentially enlarged. This enlargement involves a mixture of the internal and space–time symmetries. The resulting group is an extension of the Poincaré group with infinitely many generators which carry internal and space–time indices. The matrix representations of the extended Poincaré generators are expressible in terms of Pauli–Lubanski vector in one case and in terms of its invariant derivative in another. In the later case the generators of the gauge group are transversal to the momentum and are projecting the non-Abelian tensor gauge fields into the transversal plane, keeping only their positively definite spacelike components.


1998 ◽  
Vol 13 (26) ◽  
pp. 2085-2094 ◽  
Author(s):  
B. SATHIAPALAN

We use the matrix formalism to investigate what happens to strings above the Hagedorn temperature. We show that is not a limiting temperature but a temperature at which the continuum string picture breaks down. We study a collection of N D-0-branes arranged to form a string having N units of light-cone momentum. We find that at high temperatures the favored phase is one where the string worldsheet has disappeared and the low-energy degrees of freedom consists of N2 massless particles ("gluons"). The nature of the transition is very similar to the deconfinement transition in large-N Yang–Mills theories.


2012 ◽  
Vol 26 (09) ◽  
pp. 1250044 ◽  
Author(s):  
SEYEDEH RAZIYEH MASHARIAN ◽  
FARHAD H. JAFARPOUR

We have considered a disordered driven-diffusive system defined on a ring. This system can be mapped onto a heterogeneous zero-range process. We have shown that the grand-canonical partition function of this process can be obtained using a matrix product formalism and that it is exactly equal to the partition function of a two-dimensional walk model. The canonical partition function of this process is also calculated. Two simple examples are presented in order to confirm the results.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Ashoke Sen

Abstract In [4] Balthazar, Rodriguez and Yin (BRY) computed the one instanton contribution to the two point scattering amplitude in two dimensional string theory to first subleading order in the string coupling. Their analysis left undetermined two constants due to divergences in the integration over world-sheet variables, but they were fixed by numerically comparing the result with that of the dual matrix model. If we consider n-point scattering amplitudes to the same order, there are actually four undetermined constants in the world-sheet approach. We show that using string field theory we can get finite unambiguous values of all of these constants, and we explicitly compute three of these four constants. Two of the three constants determined this way agree with the numerical result of BRY within the accuracy of numerical analysis, but the third constant seems to differ by 1/2. We also discuss a shortcut to determining the fourth constant if we assume the equality of the quantum corrected D-instanton action and the action of the matrix model instanton. This also agrees with the numerical result of BRY.


1998 ◽  
Vol 13 (12) ◽  
pp. 921-936 ◽  
Author(s):  
N. D. HARI DASS ◽  
B. SATHIAPALAN

We study a configuration of a parallel F- (fundamental) and D-string in IIB string theory by considering its T-dual configuration in the matrix model description of M-theory. We show that certain nonperturbative features of string theory such as O(e-1/gs) effects due to soliton loops, the existence of bound state (1,1) strings and manifest S-duality, can be seen in matrix models. We discuss certain subtleties that arise in the large-N limit when membranes are wrapped around compact dimensions.


Sign in / Sign up

Export Citation Format

Share Document