scholarly journals A GENERALIZED MODEL FOR TWO-DIMENSIONAL QUANTUM GRAVITY AND DYNAMICS OF RANDOM SURFACES FOR d>1

1994 ◽  
Vol 09 (22) ◽  
pp. 2009-2018 ◽  
Author(s):  
M. MARTELLINI ◽  
M. SPREAFICO ◽  
K. YOSHIDA

The possible interpretations of a new continuum model for the two-dimensional quantum gravity for d>1 (d=matter central charge), obtained by carefully treating both diffeomorphism and Weyl symmetries, are discussed. In particular we note that an effective field theory is achieved in low energy (large area) expansion, that may represent smooth self-avoiding random surfaces embedded in a d-dimensional flat space-time for arbitrary d. Moreover the values of some critical exponents are computed, that are in agreement with some recent numerical results.

1997 ◽  
Vol 11 (26n27) ◽  
pp. 3247-3279
Author(s):  
M. Martellini ◽  
M. Spreafico ◽  
K. Yoshida

Two dimensional induced quantum gravity with matter central charge c>1 is studied by carefully treating both diffeomorphism and Weyl symmetries. It is shown that, for the gauge fixing condition R(g) (scalar curvature) = const, one obtains a modification of the David–Distler–Kawai version of KPZ scaling. We obtain a class of models with real string tension for all values c>1. They contain a free parameter which is, however, strongly constrained by the requirement of the non triviality of the model. The possible physical significance of the new model is discussed. In particular we note that it describes smooth surfaces imbedded in d-dimensional flat space time for arbitrary d, which is consistent with recent numerical results for d=3.


Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 171
Author(s):  
Folkert Kuipers ◽  
Xavier Calmet

In this paper, we discuss singularity theorems in quantum gravity using effective field theory methods. To second order in curvature, the effective field theory contains two new degrees of freedom which have important implications for the derivation of these theorems: a massive spin-2 field and a massive spin-0 field. Using an explicit mapping of this theory from the Jordan frame to the Einstein frame, we show that the massive spin-2 field violates the null energy condition, while the massive spin-0 field satisfies the null energy condition, but may violate the strong energy condition. Due to this violation, classical singularity theorems are no longer applicable, indicating that singularities can be avoided, if the leading quantum corrections are taken into account.


1989 ◽  
Vol 04 (22) ◽  
pp. 2125-2139 ◽  
Author(s):  
V.A. KAZAKOV

It is established that various critical regimes may occur for a model of two-dimensional pure quantum gravity. These regimes correspond to the presence of effective fields with scaling dimensions Δk=−γ str ·k/2, k=1, 2, 3 ..., where γ str =−1/m, m=2, 3, 4 ... is the critical exponent of “string susceptibility” (with respect to the cosmological constant). This behaviour is typical for unitary conformal fields with the central charge c=1−6/m(m+1) in the presence of 2D-quantum gravity. We use the framework of loop equations for the invariant boundary functional, which are exactly solvable in this case.


1990 ◽  
Vol 05 (20) ◽  
pp. 3943-3983 ◽  
Author(s):  
GUSTAV W. DELIUS ◽  
PETER VAN NIEUWENHUIZEN ◽  
V. G. J. RODGERS

The method of coadjoint orbits produces for any infinite dimensional Lie (super) algebra A with nontrivial central charge an action for scalar (super) fields which has at least the symmetry A. In this article, we try to make this method accessible to a larger audience by analyzing several examples in more detail than in the literature. After working through the Kac-Moody and Virasoro cases, we apply the method to the super Virasoro algebra and reobtain the supersymmetric extension of Polyakov's local nonpolynomial action for two-dimensional quantum gravity. As in the Virasoro case this action corresponds to the coadjoint orbit of a pure central extension. We further consider the actions corresponding to the other orbits of the super Virasoro algebra. As a new result we construct the actions for the N = 2 super Virasoro algebra.


Author(s):  
Nicolás Valdés-Meller

We argue that quantum gravity is nonlocal, first by recalling well-known arguments that support this idea and then by focusing on a point not usually emphasized: that making a conventional effective field theory (EFT) for quantum gravity is particularly difficult, and perhaps impossible in principle. This inability to realize an EFT comes down to the fact that gravity itself sets length scales for a problem: when integrating out degrees of freedom above some cutoff, the effective metric one uses will be different, which will itself re-define the cutoff. We also point out that even if the previous problem is fixed, naïvely applying EFT in gravity can lead to problems — we give a particular example in the case of black holes.


2001 ◽  
Vol 16 (10) ◽  
pp. 663-671
Author(s):  
TRISTAN HÜBSCH

The Hilbert spaces of supersymmetric systems admit symmetries which are often related to the topology and geometry of the (target) field-space. Here, we study certain (2, 2)-supersymmetric systems in two-dimensional space–time which are closely related to superstring models. They all turn out to possess some hitherto unexploited and geometrically and topologically unobstructed symmetries, providing new tools for studying the topology and geometry of superstring target space–times, and so the dynamics of the effective field theory in these.


Sign in / Sign up

Export Citation Format

Share Document