scholarly journals WHITHAM-TODA HIERARCHY AND N=2 SUPERSYMMETRIC YANG-MILLS THEORY

1996 ◽  
Vol 11 (02) ◽  
pp. 157-168 ◽  
Author(s):  
TOSHIO NAKATSU ◽  
KANEHISA TAKASAKI

The exact solution of N=2 supersymmetric SU(N) Yang-Mills theory is studied in the framework of the Whitham hierarchies. The solution is identified with a homogeneous solution of a Whitham hierarchy. This integrable hierarchy (Whitham-Toda hierarchy) describes modulation of a quasiperiodic solution of the (generalized) Toda lattice hierarchy associated with the hyperelliptic curves over the quantum moduli space. The relation between the holomorphic pre-potential of the low energy effective action and the τ-function of the (generalized) Toda lattice hierarchy is also clarified.

Author(s):  
Zhiguo Xu

Starting from a more generalized discrete [Formula: see text] matrix spectral problem and using the Tu scheme, some integrable lattice hierarchies (ILHs) are presented which include the well-known relativistic Toda lattice hierarchy and some new three-field ILHs. Taking one of the hierarchies as example, the corresponding Hamiltonian structure is constructed and the Liouville integrability is illustrated. For the first nontrivial lattice equation in the hierarchy, the [Formula: see text]-fold Darboux transformation (DT) of the system is established basing on its Lax pair. By using the obtained DT, we generate the discrete [Formula: see text]-soliton solutions in determinant form and plot their figures with proper parameters, from which we get some interesting soliton structures such as kink and anti-bell-shaped two-soliton, kink and anti-kink-shaped two-soliton and so on. These soliton solutions are much stable during the propagation, the solitary waves pass through without change of shapes, amplitudes, wave-lengths and directions. Finally, we derive infinitely many conservation laws of the system and give the corresponding conserved density and associated flux formulaically.


1995 ◽  
Vol 07 (05) ◽  
pp. 743-808 ◽  
Author(s):  
KANEHISA TAKASAKI ◽  
TAKASHI TAKEBE

Analogues of the KP and the Toda lattice hierarchy called dispersionless KP and Toda hierarchy are studied. Dressing operations in the dispersionless hierarchies are introduced as a canonical transformation, quantization of which is dressing operators of the ordinary KP and Toda hierarchy. An alternative construction of general solutions of the ordinary KP and Toda hierarchy is given as twistor construction which is quantization of the similar construction of solutions of dispersionless hierarchies. These results as well as those obtained in previous papers are presented with proofs and necessary technical details.


1997 ◽  
Vol 12 (27) ◽  
pp. 4907-4931 ◽  
Author(s):  
I. Antoniadis ◽  
B. Pioline

Low-energy limits of N = 2 supersymmetric field theories in the Higgs branch are described in terms of a nonlinear four-dimensional σ-model on a hyper-Kähler target space, classically obtained as a hyper-Kähler quotient of the original flat hypermultiplet space by the gauge group. We review in a pedagogical way this construction, and illustrate it in various examples, with special attention given to the singularities emerging in the low-energy theory. In particular, we thoroughly study the Higgs branch singularity of Seiberg–Witten SU(2) theory with Nf flavors, interpreted by Witten as a small instanton singularity in the moduli space of one instanton on ℝ4. By explicitly evaluating the metric, we show that this Higgs branch coincides with the Higgs branch of a U(1) N = 2 SUSY theory with the number of flavors predicted by the singularity structure of Seiberg–Witten's theory in the Coulomb phase. We find another example of Higgs phase duality, namely between the Higgs phases of U(Nc)Nf flavors and U(Nf-Nc)Nf flavors theories, by using a geometric interpretation due to Biquard et al. This duality may be relevant for understanding Seiberg's conjectured duality Nc ↔ Nf-Nc in N = 1 SUSY SU(Nc) gauge theories.


2019 ◽  
Vol 33 (03) ◽  
pp. 1950028
Author(s):  
Xi-Xiang Xu ◽  
Min Guo ◽  
Ning Zhang

An implicit symmetry constraint of the famous Toda lattice hierarchy is presented. Using this symmetry constraint, every lattice equation in the Toda hierarchy is decomposed by an integrable symplectic map and a completely integrable finite-dimensional Hamiltonian system.


2006 ◽  
Vol 18 (10) ◽  
pp. 1055-1073 ◽  
Author(s):  
LEE-PENG TEO

In this paper, we derive the Fay-like identities of tau function for the Toda lattice hierarchy from the bilinear identity. We prove that the Fay-like identities are equivalent to the hierarchy. We also show that the dispersionless limit of the Fay-like identities are the dispersionless Hirota equations of the dispersionless Toda hierarchy.


2001 ◽  
Vol 16 (02) ◽  
pp. 303-329
Author(s):  
TATIANA A. IVANOVA ◽  
OLAF LECHTENFELD

It is known for ten years that self-dual Yang–Mills theory is the effective field theory of the open N=2 string in (2+2)-dimensional space–time. We uncover an infinite set of Abelian rigid string symmetries, corresponding to the symmetries and integrable hierarchy of the self-dual Yang–Mills equations. The twistor description of the latter naturally connects with the BRST approach to string quantization, providing an interpretation of the picture phenomenon in terms of the moduli space of string backgrounds.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Anthony Ashmore ◽  
Sebastian Dumitru ◽  
Burt A. Ovrut

Abstract The strongly coupled heterotic M-theory vacuum for both the observable and hidden sectors of the B − L MSSM theory is reviewed, including a discussion of the “bundle” constraints that both the observable sector SU(4) vector bundle and the hidden sector bundle induced from a single line bundle must satisfy. Gaugino condensation is then introduced within this context, and the hidden sector bundles that exhibit gaugino condensation are presented. The condensation scale is computed, singling out one line bundle whose associated condensation scale is low enough to be compatible with the energy scales available at the LHC. The corresponding region of Kähler moduli space where all bundle constraints are satisfied is presented. The generic form of the moduli dependent F-terms due to a gaugino superpotential — which spontaneously break N = 1 supersymmetry in this sector — is presented and then given explicitly for the unique line bundle associated with the low condensation scale. The moduli-dependent coefficients for each of the gaugino and scalar field soft supersymmetry breaking terms are computed leading to a low-energy effective Lagrangian for the observable sector matter fields. We then show that at a large number of points in Kähler moduli space that satisfy all “bundle” constraints, these coefficients are initial conditions for the renormalization group equations which, at low energy, lead to completely realistic physics satisfying all phenomenological constraints. Finally, we show that a substantial number of these initial points also satisfy a final constraint arising from the quadratic Higgs-Higgs conjugate soft supersymmetry breaking term.


1995 ◽  
Vol 10 (17) ◽  
pp. 2537-2577 ◽  
Author(s):  
H. ARATYN ◽  
E. NISSIMOV ◽  
S. PACHEVA ◽  
A.H. ZIMERMAN

Toda lattice hierarchy and the associated matrix formulation of the 2M-boson KP hierarchies provide a framework for the Drinfeld-Sokolov reduction scheme realized through Hamiltonian action within the second KP Poisson bracket. By working with free currents, which Abelianize the second KP Hamiltonian structure, we are able to obtain a unified formalism for the reduced SL (M+1, M−k) KdV hierarchies interpolating between the ordinary KP and KdV hierarchies. The corresponding Lax operators are given as superdeterminants of graded SL (M+1, M−k) matrices in the diagonal gauge and we describe their bracket structure and field content. In particular, we provide explicit free field representations of the associated W(M, M−k) Poisson bracket algebras generalizing the familiar nonlinear WM+1 algebra. Discrete Bäcklund transformations for SL (M+1, M−k) KdV are generated naturally from lattice translations in the underlying Toda-like hierarchy. As an application we demonstrate the equivalence of the two-matrix string model to the SL (M+1, 1) KdV hierarchy.


1999 ◽  
Vol 537 (1-3) ◽  
pp. 161-183 ◽  
Author(s):  
M. Chaichian ◽  
W.F. Chen ◽  
C. Montonen

Sign in / Sign up

Export Citation Format

Share Document