Amending the Standard Model of Particle Physics

2004 ◽  
Vol 19 (supp01) ◽  
pp. 167-180 ◽  
Author(s):  
Maurice Goldhaber

Some of my earlier arguments, suggesting modifications of the Standard Model of Particle Physics (see ref. 1), are elaborated and extended. Rules deduced from the known properties of elementary fermions are sharpened and extended in the first part. Conclusions drawn from the rules in the second part are also honed and expanded and an estimate of the neutrino mass eigenstates is added. In the third part, a tentative explanation of the rules is discussed. In my earlier paper, I suggested replacing the point-sources postulated by the Standard Model for each generation by finite 'source-shapes', equal for all elementary fermions of a generation and systematically decreasing in volume from the first to the third generation, thus increasing the effect of self-interactions. According to the rules a correlation exists between the mass of an elementary fermion and the strength of its self-interaction, thus an increase in self-interactions would resolve the problem of the hierarchical masses. A possible connection between the existence of only three generations and the three-dimensionality of space also is discussed. In the epilogue the question is explored whether finite source-shapes for the elementary fermions can be reconciled with fundamental theoretical tenets.

2003 ◽  
Vol 18 (supp02) ◽  
pp. 1-40 ◽  
Author(s):  
Sheung Tsun TSOU

In these lectures I shall explain how a new-found nonabelian duality can be used to solve some outstanding questions in particle physics. The first lecture introduces the concept of electromagnetic duality and goes on to present its nonabelian generalization in terms of loop space variables. The second lecture discusses certain puzzles that remain with the Standard Model of particle physics, particularly aimed at nonexperts. The third lecture presents a solution to these problems in the form of the Dualized Standard Model, first proposed by Chan and the author, using nonabelian dual symmetry. The fundamental particles exist in three generations, and if this is a manifestation of dual colour symmetry, which by 't Hooft's theorem is necessarily broken, then we have a natural explanation of the generation puzzle, together with tested and testable consequences not only in particle physics, but also in astrophysics, nuclear and atomic physics. Reported is mainly work done in collaboration with Chan Hong-Mo, and also various parts with Peter Scharbach, Jacqueline Faridani, José Bordes, Jakov Pfaudler, Ricardo Gallego severally.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Amin Aboubrahim ◽  
Pran Nath ◽  
Raza M. Syed

Abstract We investigate the Yukawa coupling unification for the third generation in a class of SO(10) unified models which are consistent with the 4.2 σ deviation from the standard model of the muon g − 2 seen by the Fermilab experiment E989. A recent analysis in supergravity grand unified models shows that such an effect can arise from supersymmetric loops correction. Using a neural network, we further analyze regions of the parameter space where Yukawa coupling unification consistent with the Fermilab result can appear. In the analysis we take into account the contributions to Yukawas from the cubic and the quartic interactions. We test the model at the high luminosity and high energy LHC and estimate the integrated luminosities needed to discover sparticles predicted by the model.


2005 ◽  
Vol 20 (31) ◽  
pp. 2397-2408 ◽  
Author(s):  
J. LORENZO DÍAZ-CRUZ

We discuss possible realizations of the hypothesis that all the fundamental interactions of the elementary particles should be of gauge type, including the Yukawa and Higgs ones. In the minimal SUSY extension of the standard model, where the quartic Higgs couplings are "gauged" through the D-terms, it is also possible to generate radiatively the Yukawa matrices for the light generations, thus expressing them as functions of gauge couplings. The program can also be applied to the SUSY LR model, where the possibility to induce radiatively the mixing angles, can help to make viable the parity solution to the strong CP problem. The superpotential of the model still includes some non-gauge couplings, namely, the Yukawa constants for the third generation and the trilinear terms λχ L Φχ R and [Formula: see text], involving the Higgs bi-doublet (Φ) and two pairs of doublets (χ L , χ R and their conjugates). Additional progress to relate these parameters to gauge couplings, can be made by embedding the LR model within a SUSY model SU (4)W× U (1)B-L in five dimensions, where the Higgs bi-doublet is identified as the extra component of the 5D gauge field.


2018 ◽  
pp. 64-69
Author(s):  
Alvaro De Rújula

Electrons, their “brothers” neutrinos, and the quarks we are made of are a family. For each of these particles there exists two “copies” in Nature, two extra families. The first novel character in this clan, the “muon” (a cousin of the electron) had “not been ordered” by anyone. Nor had the first extra “strange” quark been ordered. Subsequently, the plot became much more interesting. The “November Revolution” subchapter recounts the theoretical prediction and discovery of the “charmed” quark. The third family was also “needed” (within what was to become the Standard Model of particle physics).


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Azadeh Maleknejad

Abstract Upon embedding the axion-inflation in the minimal left-right symmetric gauge extension of the SM with gauge group SU(2)L × SU(2)R × U(1)B−L, [1] proposed a new particle physics model for inflation. In this work, we present a more detailed analysis. As a compelling consequence, this setup provides a new mechanism for simultaneous baryogenesis and right-handed neutrino creation by the chiral anomaly of WR in inflation. The lightest right-handed neutrino is the dark matter candidate. This setup has two unknown fundamental scales, i.e., the scale of inflation and left-right symmetry breaking SU(2)R × U(1)B−L→ U(1)Y. Sufficient matter creation demands the left-right symmetry breaking scale happens shortly after the end of inflation. Interestingly, it prefers left-right symmetry breaking scales above 1010 GeV, which is in the range suggested by the non-supersymmetric SO(10) Grand Unified Theory with an intermediate left-right symmetry scale. Although WR gauge field generates equal amounts of right-handed baryons and leptons in inflation, i.e. B − L = 0, in the Standard Model sub-sector B − LSM ≠ 0. A key aspect of this setup is that SU(2)R sphalerons are never in equilibrium, and the primordial B − LSM is conserved by the Standard Model interactions. This setup yields a deep connection between CP violation in physics of inflation and matter creation (visible and dark); hence it can naturally explain the observed coincidences among cosmological parameters, i.e., ηB ≃ 0.3Pζ and ΩDM ≃ 5ΩB. The new mechanism does not rely on the largeness of the unconstrained CP-violating phases in the neutrino sector nor fine-tuned masses for the heaviest right-handed neutrinos. The SU(2)R-axion inflation comes with a cosmological smoking gun; chiral, non-Gaussian, and blue-tilted gravitational wave background, which can be probed by future CMB missions and laser interferometer detectors.


2002 ◽  
Vol 3 (9) ◽  
pp. 1097-1106 ◽  
Author(s):  
Fawzi Boudjema ◽  
Dieter Zeppenfeld

Sign in / Sign up

Export Citation Format

Share Document