scholarly journals Electric–Magnetic Duality and the Dualized Standard Model

2003 ◽  
Vol 18 (supp02) ◽  
pp. 1-40 ◽  
Author(s):  
Sheung Tsun TSOU

In these lectures I shall explain how a new-found nonabelian duality can be used to solve some outstanding questions in particle physics. The first lecture introduces the concept of electromagnetic duality and goes on to present its nonabelian generalization in terms of loop space variables. The second lecture discusses certain puzzles that remain with the Standard Model of particle physics, particularly aimed at nonexperts. The third lecture presents a solution to these problems in the form of the Dualized Standard Model, first proposed by Chan and the author, using nonabelian dual symmetry. The fundamental particles exist in three generations, and if this is a manifestation of dual colour symmetry, which by 't Hooft's theorem is necessarily broken, then we have a natural explanation of the generation puzzle, together with tested and testable consequences not only in particle physics, but also in astrophysics, nuclear and atomic physics. Reported is mainly work done in collaboration with Chan Hong-Mo, and also various parts with Peter Scharbach, Jacqueline Faridani, José Bordes, Jakov Pfaudler, Ricardo Gallego severally.

2019 ◽  
pp. 54-63
Author(s):  
Nicholas Mee

The structure of matter and the forces that are important in particle physics are now understood in terms of the Standard Model, which is currently being tested at the Large Hadron Collider (LHC). Since the 1930s, physicists have used particle accelerators to investigate the structure of matter. Three forces are important in particle interactions, the strong force, the weak force and the electromagnetic force. The weak and electromagnetic forces are now recognized as two components of a unified electroweak force. The strong force and the electroweak force act on a small collection of fundamental particles that include quarks, the subcomponents of protons, neutrons and many other particles. The final missing piece of the Standard Model, the Higgs boson, was discovered by the LHC in 2012.


Author(s):  
Tara Shears

The Standard Model is the theory used to describe the interactions between fundamental particles and fundamental forces. It is remarkably successful at predicting the outcome of particle physics experiments. However, the theory has not yet been completely verified. In particular, one of the most vital constituents, the Higgs boson, has not yet been observed. This paper describes the Standard Model, the experimental tests of the theory that have led to its acceptance and its shortcomings.


2004 ◽  
Vol 19 (supp01) ◽  
pp. 167-180 ◽  
Author(s):  
Maurice Goldhaber

Some of my earlier arguments, suggesting modifications of the Standard Model of Particle Physics (see ref. 1), are elaborated and extended. Rules deduced from the known properties of elementary fermions are sharpened and extended in the first part. Conclusions drawn from the rules in the second part are also honed and expanded and an estimate of the neutrino mass eigenstates is added. In the third part, a tentative explanation of the rules is discussed. In my earlier paper, I suggested replacing the point-sources postulated by the Standard Model for each generation by finite 'source-shapes', equal for all elementary fermions of a generation and systematically decreasing in volume from the first to the third generation, thus increasing the effect of self-interactions. According to the rules a correlation exists between the mass of an elementary fermion and the strength of its self-interaction, thus an increase in self-interactions would resolve the problem of the hierarchical masses. A possible connection between the existence of only three generations and the three-dimensionality of space also is discussed. In the epilogue the question is explored whether finite source-shapes for the elementary fermions can be reconciled with fundamental theoretical tenets.


Author(s):  
Geoff Cottrell

‘Fundamental particles’ introduces the ultimate building blocks of matter, which include antimatter, and describes how the world can be understood in terms of around twenty different quantum fields. Most of the mass of normal matter can be explained by the energy in these quantum fields. Only a handful of elementary particles make up the world: quarks, leptons, and the force particles, which appear in the Standard Model of Particle Physics. The elementary particles get their masses by interacting with the all-pervasive Higgs field, but the dominant source of the mass of ordinary matter comes from the energy of the quark and gluon fields inside nucleons. The Standard Model is a towering achievement of science, but it is not complete.


2018 ◽  
pp. 64-69
Author(s):  
Alvaro De Rújula

Electrons, their “brothers” neutrinos, and the quarks we are made of are a family. For each of these particles there exists two “copies” in Nature, two extra families. The first novel character in this clan, the “muon” (a cousin of the electron) had “not been ordered” by anyone. Nor had the first extra “strange” quark been ordered. Subsequently, the plot became much more interesting. The “November Revolution” subchapter recounts the theoretical prediction and discovery of the “charmed” quark. The third family was also “needed” (within what was to become the Standard Model of particle physics).


Author(s):  
T. S. Virdee

The Large Hadron Collider (LHC) at CERN and its experiments were conceived to tackle open questions in particle physics. The mechanism of the generation of mass of fundamental particles has been elucidated with the discovery of the Higgs boson. It is clear that the standard model is not the final theory. The open questions still awaiting clues or answers, from the LHC and other experiments, include: What is the composition of dark matter and of dark energy? Why is there more matter than anti-matter? Are there more space dimensions than the familiar three? What is the path to the unification of all the fundamental forces? This talk will discuss the status of, and prospects for, the search for new particles, symmetries and forces in order to address the open questions. This article is part of the themed issue ‘Unifying physics and technology in light of Maxwell's equations’.


Author(s):  
Sterling P. Newberry

At the 1958 meeting of our society, then known as EMSA, the author introduced the concept of microspace and suggested its use to provide adequate information storage space and the use of electron microscope techniques to provide storage and retrieval access. At this current meeting of MSA, he wishes to suggest an additional use of the power of the electron microscope.The author has been contemplating this new use for some time and would have suggested it in the EMSA fiftieth year commemorative volume, but for page limitations. There is compelling reason to put forth this suggestion today because problems have arisen in the “Standard Model” of particle physics and funds are being greatly reduced just as we need higher energy machines to resolve these problems. Therefore, any techniques which complement or augment what we can accomplish during this austerity period with the machines at hand is worth exploring.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2019 ◽  
Author(s):  
Adib Rifqi Setiawan

Put simply, Lisa Randall’s job is to figure out how the universe works, and what it’s made of. Her contributions to theoretical particle physics include two models of space-time that bear her name. The first Randall–Sundrum model addressed a problem with the Standard Model of the universe, and the second concerned the possibility of a warped additional dimension of space. In this work, we caught up with Randall to talk about why she chose a career in physics, where she finds inspiration, and what advice she’d offer budding physicists. This article has been edited for clarity. My favourite quote in this interview is, “Figure out what you enjoy, what your talents are, and what you’re most curious to learn about.” If you insterest in her work, you can contact her on Twitter @lirarandall.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Azadeh Maleknejad

Abstract Upon embedding the axion-inflation in the minimal left-right symmetric gauge extension of the SM with gauge group SU(2)L × SU(2)R × U(1)B−L, [1] proposed a new particle physics model for inflation. In this work, we present a more detailed analysis. As a compelling consequence, this setup provides a new mechanism for simultaneous baryogenesis and right-handed neutrino creation by the chiral anomaly of WR in inflation. The lightest right-handed neutrino is the dark matter candidate. This setup has two unknown fundamental scales, i.e., the scale of inflation and left-right symmetry breaking SU(2)R × U(1)B−L→ U(1)Y. Sufficient matter creation demands the left-right symmetry breaking scale happens shortly after the end of inflation. Interestingly, it prefers left-right symmetry breaking scales above 1010 GeV, which is in the range suggested by the non-supersymmetric SO(10) Grand Unified Theory with an intermediate left-right symmetry scale. Although WR gauge field generates equal amounts of right-handed baryons and leptons in inflation, i.e. B − L = 0, in the Standard Model sub-sector B − LSM ≠ 0. A key aspect of this setup is that SU(2)R sphalerons are never in equilibrium, and the primordial B − LSM is conserved by the Standard Model interactions. This setup yields a deep connection between CP violation in physics of inflation and matter creation (visible and dark); hence it can naturally explain the observed coincidences among cosmological parameters, i.e., ηB ≃ 0.3Pζ and ΩDM ≃ 5ΩB. The new mechanism does not rely on the largeness of the unconstrained CP-violating phases in the neutrino sector nor fine-tuned masses for the heaviest right-handed neutrinos. The SU(2)R-axion inflation comes with a cosmological smoking gun; chiral, non-Gaussian, and blue-tilted gravitational wave background, which can be probed by future CMB missions and laser interferometer detectors.


Sign in / Sign up

Export Citation Format

Share Document