QUANTUM FIELD THEORY TOOLS: A MECHANISM OF MASS GENERATION OF GAUGE FIELDS

2006 ◽  
Vol 21 (06) ◽  
pp. 1307-1324
Author(s):  
F. V. FLORES-BAEZ ◽  
J. J. GODINA-NAVA ◽  
G. ORDAZ-HERNANDEZ

We present a simple mechanism for mass generation of gauge fields for the Yang–Mills theory, where two gauge SU (N)-connections are introduced to incorporate the mass term. Variations of these two sets of gauge fields compensate each other under local gauge transformations with the local gauge transformations of the matter fields, preserving gauge invariance. In this way the mass term of gauge fields is introduced without violating the local gauge symmetry of the Lagrangian. Because the Lagrangian has strict local gauge symmetry, the model is a renormalizable quantum model. This model, in the appropriate limit, comes from a class of universal Lagrangians which define a new massive Yang–Mills theories without Higgs bosons.

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
L. Borsten ◽  
I. Jubb ◽  
V. Makwana ◽  
S. Nagy

Abstract A definition of a convolution of tensor fields on group manifolds is given, which is then generalised to generic homogeneous spaces. This is applied to the product of gauge fields in the context of ‘gravity = gauge × gauge’. In particular, it is shown that the linear Becchi-Rouet-Stora-Tyutin (BRST) gauge transformations of two Yang-Mills gauge fields generate the linear BRST diffeomorphism transformations of the graviton. This facilitates the definition of the ‘gauge × gauge’ convolution product on, for example, the static Einstein universe, and more generally for ultrastatic spacetimes with compact spatial slices.


2014 ◽  
Vol 29 (22) ◽  
pp. 1450120 ◽  
Author(s):  
Jong-Ping Hsu

We discuss a confining model for quark–antiquark system with a new color SU3 gauge symmetry. New gauge transformations involve non-integrable phase factors and lead to the fourth-order gauge field equations and a linear potential. The massless gauge bosons have non-definite energies, which are not observable because they are permanently confined in quark systems by the linear potential. We use the empirical potentials of charmonium to determine the coupling strength of the color charge gs and find [Formula: see text]. The rules for Feynman diagrams involve propagators with poles of order 2 associated with new gauge fields. The confining quark model may be renormalizable by power counting and compatible with perturbation theory.


2005 ◽  
Vol 20 (25) ◽  
pp. 1933-1938 ◽  
Author(s):  
R. CASANA ◽  
B. M. PIMENTEL

We study the regularization ambiguities in an exact renormalized (1 +1)-dimensional field theory. We show a relation between the regularization ambiguities and the coupling parameters of the theory as well as their role in the implementation of a local gauge symmetry at quantum level.


2017 ◽  
Vol 386 ◽  
pp. 199-241 ◽  
Author(s):  
Ilya Kull ◽  
Andras Molnar ◽  
Erez Zohar ◽  
J. Ignacio Cirac

2006 ◽  
Vol 21 (23n24) ◽  
pp. 4931-4957 ◽  
Author(s):  
GEORGE SAVVIDY

We suggest an infinite-dimensional extension of gauge transformations which includes non-Abelian tensor gauge fields. In this extension of the Yang–Mills theory the vector gauge boson becomes a member of a bigger family of gauge bosons of arbitrarily large integer spins. The invariant Lagrangian does not contain higher derivatives of tensor gauge fields and all interactions take place through three- and four-particle exchanges with dimensionless coupling constant.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850045 ◽  
Author(s):  
Alcides Garat

The relationship between gauge and gravity amounts to understanding the underlying new geometrical local structures. These structures are new tetrads specially devised for Yang–Mills theories, Abelian and non-Abelian in four-dimensional Lorentzian curved spacetimes. In the present paper, a new tetrad is introduced for the Yang–Mills [Formula: see text] formulation. These new tetrads establish a link between local groups of gauge transformations and local groups of spacetime transformations that we previously called LB1 and LB2. New theorems are proved regarding isomorphisms between local internal [Formula: see text] groups and local tensor products of spacetime LB1 and LB2 groups of transformations. These new tetrads define at every point in spacetime two orthogonal planes that we called blades or planes one and two. These are the local planes of covariant diagonalization of the stress–energy tensor. These tetrads are gauge dependent. Tetrad local gauge transformations leave the tetrads inside the local original planes without leaving them. These local tetrad gauge transformations enable the possibility to connect local gauge groups Abelian or non-Abelian with local groups of tetrad transformations. On the local plane one, the Abelian group [Formula: see text] of gauge transformations was already proved to be isomorphic to the tetrad local group of transformations LB1, for example. LB1 is [Formula: see text] plus two different kinds of discrete transformations. On the local orthogonal plane two [Formula: see text] is isomorphic to LB2 which is just [Formula: see text]. That is, we proved that LB1 is isomorphic to [Formula: see text] which is a remarkable result since a noncompact group plus two discrete transformations is isomorphic to a compact group. These new tetrads have displayed manifestly and nontrivially the coupling between Yang–Mills fields and gravity. The new tetrads and the stress–energy tensor allow for the introduction of three new local gauge invariant objects. Using these new gauge invariant objects and in addition a new general local duality transformation, a new algorithm for the gauge invariant diagonalization of the Yang–Mills stress–energy tensor is developed as an application. This is a paper about grand Standard Model gauge theories — General Relativity gravity unification and grand group unification in four-dimensional curved Lorentzian spacetimes.


1980 ◽  
Vol 94 (2) ◽  
pp. 135-140 ◽  
Author(s):  
D. Foerster ◽  
H.B. Nielsen ◽  
M. Ninomiya

2000 ◽  
Vol 15 (06) ◽  
pp. 893-903 ◽  
Author(s):  
C. BIZDADEA ◽  
L. SALIU ◽  
S. O. SALIU

Consistent interactions between Yang–Mills gauge fields and an Abelian two-form are investigated by using a Hamiltonian cohomological procedure. It is shown that the deformation of the BRST charge and the BRST-invariant Hamiltonian of the uncoupled model generates the Yang–Mills Chern–Simons interaction term. The resulting interactions deform both the gauge transformations and their algebra, but not the reducibility relations.


Sign in / Sign up

Export Citation Format

Share Document