scholarly journals UPDATED LIMITS ON THE ULTRA-HIGH ENERGY (UHE) NEUTRINO FLUX FROM THE RICE EXPERIMENT

2006 ◽  
Vol 21 (supp01) ◽  
pp. 153-157 ◽  
Author(s):  
I. KRAVCHENKO ◽  
C. COOLEY ◽  
D. SECKEL ◽  
J. ADAMS ◽  
S. CHURCHWELL ◽  
...  

The RICE experiment (Radio Ice Cherenkov Experiment) at South Pole consists of an array of dipole antennas designed to detect the coherent radio frequency radiation produced by neutrino-induced showers in the Antarctic ice. We report updated limits on the ultra-high energy neutrino flux, based on RICE data taken between 2000 and 2004. These limits also reflect improvements in Monte Carlo simulations and detector modeling.

2005 ◽  
Vol 20 (14) ◽  
pp. 3096-3098 ◽  
Author(s):  
◽  
ANDREA SILVESTRI

We present recent results from the Antarctic Muon And Neutrino Detector Array (AMANDA), located at the South Pole in Antarctica. AMANDA-II, commissioned in 2000, is a multipurpose high energy neutrino telescope with a broad physics and astrophysics scope. We summarize the results from searches for a variety of sources of ultra-high energy neutrinos: TeV-PeV diffuse sources by measuring either muon tracks or cascades, neutrinos in excess of PeV by searching for muons traveling in the down-going direction and point sources.


2017 ◽  
Vol 26 (08) ◽  
pp. 1750083
Author(s):  
Enrico Conti ◽  
Giorgio Sartori

Extended Air Showers produced by cosmic rays impinging on the earth atmosphere irradiate radio frequency radiation through different mechanisms. Upon certain conditions, the emission has a coherent nature, with the consequence that the emitted power is not proportional to the energy of the primary cosmic rays, but to the energy squared. The effect was predicted in 1962 by Askaryan and it is nowadays experimentally well established and exploited for the detection of ultra high energy cosmic rays. In this paper, we discuss in detail the conditions for coherence, which in literature have been too often taken for granted, and calculate them analytically, finding a formulation which comprehends both the coherent and the incoherent emissions. We apply the result to the Cherenkov effect, obtaining the same conclusions derived by Askaryan, and to the geosynchrotron radiation.


2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


2018 ◽  
Vol 14 (S342) ◽  
pp. 184-188
Author(s):  
J. C. Rodríguez-Ramírez ◽  
Elisabete M. de Gouveia Dal Pino ◽  
R. Alves Batista

AbstractVery high energy (VHE) emission has been detected from the radio galaxy NGC1275, establishing it as a potential cosmic-ray (CR) accelerator and a high energy neutrino source. We here study neutrino and γ-ray emission from the core of NGC1275 simulating the interactions of CRs assumed to be accelerated by magnetic reconnection, with the accreting plasma environment. To do this, we combine (i) numerical general relativistic (GR) magneto-hydrodynamics (MHD), (ii) Monte Carlo GR leptonic radiative transfer and, (iii) Monte Carlo interaction of CRs. A leptonic emission model that reproduces the SED in the [103-1010.5] eV energy range is used as the background target for photo-pion interactions+electromagnetic cascading. CRs injected with the power-law index κ=1.3 produce an emission profile that matches the VHE tail of NGC1275. The associated neutrino flux, below the IceCube limits, peaks at ∼PeV energies. However, coming from a single source, this neutrino flux may be an over-estimation.


2019 ◽  
Vol 210 ◽  
pp. 01008
Author(s):  
William Hanlon

Telescope Array (TA) has recently published results of nearly nine years of Xmax observations providing its highest statistics measurement of ultra high energy cosmic ray (UHECR) mass composition to date for energies exceeding 1018.2 eV. This analysis measured agreement of observed data with results expected for four different single elements. Instead of relying only on the first and second moments of Xmax distributions, we employ a morphological test of agreement between data and Monte Carlo to allow for systematic uncertainties in data and in current UHECR hadronic models. Results of this latest analysis and implications of UHECR composition observed by TA are presented. TA can utilize different analysis methods to understand composition as both a crosscheck on results and as a tool to understand systematics affecting Xmax measurements. The different analysis efforts utilizing fluorescence detector stereo, surface detector and fluorescence detector hybrid, and surface detector-only, currently underway at TA performed to understand composition are also discussed.


2019 ◽  
Vol 216 ◽  
pp. 04008
Author(s):  
Eric Oberla

Ground-based radio arrays offer a promising future for the measurement of ultra-high energy neutrinos, including the prospect of reducing the radio-detection energy threshold to a level necessary to overlap with the high-energy range probed by IceCube (~1016 eV). Here we describe a phased array of antennas and beamforming electronics, which serves as a highly sensitive and directional trigger system for nanosecond-scale plane wave impulses. A prototype in-ice phased array was successfully installed during the 2017/18 austral summer at the South Pole in collaboration with the Askaryan Radio Array (ARA). The trigger array is a compact string of 7 in-ice dipole antennas deployed at a depth of 200 m, whose signals are continuously digitized at the surface using 1.5 GSa/s ADCs with 7-bit resolution. We measure a 50% trigger efficiency on band-limited impulses with signal-to-noise ratios of 2.0 or smaller.


2007 ◽  
Vol 22 (30) ◽  
pp. 2237-2246 ◽  
Author(s):  
◽  
ANDREA SILVESTRI ◽  
S. W. BARWICK ◽  
J. J. BEATTY ◽  
D. Z. BESSON ◽  
...  

The ANtarctic Impulse Transient Antenna (ANITA) is the first long-duration balloon experiment designed to search and measure the flux of Greisen–Zapsepin–Kuzmin (GZK) neutrinos. We present new limits on neutrinos fluxes of astronomical origin from data collected with the successful launch of a 2-antenna prototype instrument, called ANITA-lite, that circled the Antarctic continent for 18.4 days in January 2004. We performed a search for Ultra-High-Energy (UHE) neutrinos with energies above 3 × 1018 eV . No excess events above the background expectation were observed and a neutrino flux following E-2 spectrum for all neutrino flavors, is limited to [Formula: see text] for 1018.5 eV < Eν < 1023.5 eV at 90% confidence level. The launch of ANITA is scheduled for December 2006. Looking beyond ANITA, we describe a new idea, called ARIANNA (Antarctic Ross Iceshelf ANtenna Neutrino Array), to increase the sensitivity for GZK neutrinos by one order of magnitude better than ANITA.


Sign in / Sign up

Export Citation Format

Share Document