scholarly journals HIGH-ENERGY ATMOSPHERIC MUON FLUX EXPECTED AT INDIA-BASED NEUTRINO OBSERVATORY

2008 ◽  
Vol 23 (19) ◽  
pp. 2933-2942 ◽  
Author(s):  
SUKANTA PANDA ◽  
SERGEI I. SINEGOVSKY

We calculate the zenith-angle dependence of conventional and prompt high-energy muon fluxes at India-Based Neutrino Observatory (INO) depth. This study demonstrates a possibility to discriminate models of the charm hadroproduction including the low-x QCD behavior of hadronic cross-sections relevant at very high energies.

2010 ◽  
Vol 25 (18n19) ◽  
pp. 3733-3740 ◽  
Author(s):  
S. I. SINEGOVSKY ◽  
A. A. KOCHANOV ◽  
T. S. SINEGOVSKAYA ◽  
A. MISAKI ◽  
N. TAKAHASHI

In the near future, the energy region above few hundreds of TeV may really be accessible for measurements of the atmospheric muon spectrum with IceCube array. Therefore, one expects that muon flux uncertainties above 50 TeV, related to a poor knowledge of charm production cross-sections and insufficiently examined primary spectra and composition, will be diminished. We give predictions for the very high-energy muon spectrum at sea level, obtained with the three hadronic interaction models, taking into account also the muon contribution due to decays of the charmed hadrons.


2008 ◽  
Vol 23 (33) ◽  
pp. 2847-2857 ◽  
Author(s):  
F. CARVALHO ◽  
F. O. DURÃES ◽  
V. P. GONÇALVES ◽  
F. S. NAVARRA

At very high energies we expect that the hadronic cross sections satisfy the Froissart bound, which is a well-established property of the strong interactions. In this energy regime we also expect the formation of the Color Glass Condensate, characterized by gluon saturation and a typical momentum scale: the saturation scale Qs. In this paper we show that if a saturation window exists between the nonperturbative and perturbative regimes of Quantum Chromodynamics (QCD), the total cross sections satisfy the Froissart bound. Furthermore, we show that our approach allows us to describe the high energy experimental data on [Formula: see text] total cross sections.


2003 ◽  
Vol 18 (27) ◽  
pp. 5047-5068 ◽  
Author(s):  
P. GUPTAROY ◽  
BHASKAR DE ◽  
S. BHATTACHARYYA

This work is in response to the stimulus received from our fairly successful attempt at understanding in the recent past the problem of direct photon production only in gold–gold and lead–lead collisions from the viewpoint of a non-standard approach. The same nonconventional formalism would, once again, be applied to analyze the vast array of measurements on the inclusive cross sections of direct photons produced in several purely nuclear or hadronuclear collisions at very high energies. Besides, some of the cross section ratios would also be calculated and be compared with data on them. All this reveals and indicates a modest agreement between the model-based calculations and the actual measurements. The authors would also endeavor here to adduce the reasons for the discrepancies, if any.


1983 ◽  
Vol 399 (2) ◽  
pp. 515-528 ◽  
Author(s):  
H.J. Pirner ◽  
W.Q. Chao ◽  
M.K. Hegab

2018 ◽  
Vol 27 (13) ◽  
pp. 1842003 ◽  
Author(s):  
Lara Nava

The number of gamma-ray bursts (GRBs) detected at high energies ([Formula: see text][Formula: see text]GeV) has seen a rapid increase over the last decade, thanks to observations from the Fermi-Large Area Telescope. The improved statistics and quality of data resulted in a better characterization of the high-energy emission properties and in stronger constraints on theoretical models. In spite of the many achievements and progresses, several observational properties still represent a challenge for theoretical models, revealing how our understanding is far from being complete. This paper reviews the main spectral and temporal properties of [Formula: see text][Formula: see text]GeV emission from GRBs and summarizes the most promising theoretical models proposed to interpret the observations. Since a boost for the understanding of GeV radiation might come from observations at even higher energies, the present status and future prospects for observations at very-high energies (above [Formula: see text][Formula: see text]100[Formula: see text]GeV) are also discussed. The improved sensitivity of upcoming facilities, coupled to theoretical predictions, supports the concrete possibility for future ground GRB detections in the high/very-high energy domain.


2003 ◽  
Vol 18 (04) ◽  
pp. 673-683
Author(s):  
M. T. HUSSEIN ◽  
N. M. HASSAN ◽  
W. ELHARBI

The multi-particle productions in neutrino–nucleon collisions at high energy are investigated through the analysis of the data of the experiment CERN-WA-025 at neutrino energy less than 260 GeV and the experiments FNAL-616 and FNAL-701 at energy range 120–250 GeV. The general features of these experiments are used as base to build a hypothetical model that views the reaction through a Feynman diagram of two vertices. The first of which concerns the weak interaction between the neutrino and the quark constituents of the nucleon. At the second vertex, a strong color field is assumed to play the role of particle production, which depend on the momentum transferred from the first vertex. The wave functions of the nucleon constituent quarks are determined using the variation method and relevant boundary conditions are applied to calculate the deep inelastic cross sections of the virtual diagram.


Galaxies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 9 ◽  
Author(s):  
Jean-Philippe Lenain

Blazars are jetted active galactic nuclei with a jet pointing close to the line of sight, hence enhancing their intrinsic luminosity and variability. Monitoring these sources is essential in order to catch them flaring and promptly organize follow-up multi-wavelength observations, which are key to providing rich data sets used to derive e.g., the emission mechanisms at work, and the size and location of the flaring zone. In this context, the Fermi-LAT has proven to be an invaluable instrument, whose data are used to trigger many follow-up observations at high and very high energies. A few examples are illustrated here, as well as a description of different data products and pipelines, with a focus given on FLaapLUC, a tool in use within the H.E.S.S. collaboration.


2018 ◽  
Vol 33 (40) ◽  
pp. 1850242 ◽  
Author(s):  
L. Stodolsky

The description of very high energy proton–proton cross-sections in terms of a “black disc” with an “edge” allows a simple generalization to highest energy proton–nucleus cross-sections. This results in a leading ln2W term and a ln W term whose coefficient depends linearly on the radius of the nucleus (W the c.m. energy). The necessary parameters are determined from the fits to p–p data. Since the coefficient of the ln W term is rather large, it is doubtful that the regime of ln2W dominance can be reached with available energies in accelerators or cosmic rays. However, the ln W term can be relevant for highest energy cosmic rays in the atmosphere, where a large increase for the cross-section on nitrogen is expected. Tests of the theory should be possible by studying the coefficient of ln W at p-nucleus colliders.


Sign in / Sign up

Export Citation Format

Share Document