scholarly journals THERMODYNAMIC GEOMETRIC STABILITY OF QUARKONIA STATES

2011 ◽  
Vol 26 (16) ◽  
pp. 2665-2724 ◽  
Author(s):  
STEFANO BELLUCCI ◽  
VINOD CHANDRA ◽  
BHUPENDRA NATH TIWARI

We compute exact thermodynamic geometric properties of the non-Abelian quarkonium bound states from the consideration of one-loop strong coupling. From the general statistical principle, the intrinsic geometric nature of strongly coupled QCD is analyzed for the Colombic, rising and Regge rotating regimes. Without any approximation, we have obtained the nonlinear mass effect for the Bloch–Nordsieck rotating strongly coupled quarkonia. For a range of physical parameters, we show in each cases that there exists a well-defined, nondegenerate, curved, intrinsic Riemannian manifold. As the gluons become softer and softer, we find in the limit of the Bloch–Nordsieck resummation that the strong coupling obtained from the Sudakov form factor possesses exact local and global thermodynamic properties of the underlying mesons, kayons and Ds particles.

2020 ◽  
Vol 75 (8) ◽  
pp. 803-807
Author(s):  
Svend-Age Biehs ◽  
Achim Kittel ◽  
Philippe Ben-Abdallah

AbstractWe theoretically analyze heat exchange between two quantum systems in interaction with external thermostats. We show that in the strong coupling limit the widely used concept of mode temperatures loses its thermodynamic foundation and therefore cannot be employed to make a valid statement on cooling and heating in such systems; instead, the incorrectly applied concept may result in a severe misinterpretation of the underlying physics. We illustrate these general conclusions by discussing recent experimental results reported on the nanoscale heat transfer through quantum fluctuations between two nanomechanical membranes separated by a vacuum gap.


1980 ◽  
Vol 58 (1) ◽  
pp. 48-62 ◽  
Author(s):  
R. D. Graves ◽  
B. A. Lamers ◽  
Anton Nagl ◽  
H. Überall ◽  
V. Devanathan ◽  
...  

The available experimental data for the form factors of the T = 1 levels in 16O, obtained from electron scattering at low (Darmstadt), medium (Tohoku), and high momentum transfer (Stanford), are interpreted by the generalized Helm model. This phenomenological model reduces the form factor description of each level to the listing of a few physical parameters, i.e., the radius and smearing width of the transition densities of charge (current) and magnetization, and their corresponding strength constants. Its parameters having been determined by the form factor fits, the model may then be used to predict the results of other medium energy processes; this is done here for the photoproduction of charged pions and for muon capture in16O.


2007 ◽  
Vol 75 (7) ◽  
Author(s):  
Paulo A. Faria da Veiga ◽  
Michael O’Carroll

2018 ◽  
Vol 175 ◽  
pp. 03004 ◽  
Author(s):  
David Schaich ◽  
Simon Catterall

We present ongoing investigations of a four-dimensional lattice field theory with four massless reduced staggered fermions coupled through an SU(4)-invariant fourfermion interaction. As in previous studies of four-fermion and Higgs–Yukawa models with different lattice fermion discretizations, we observe a strong-coupling phase in which the system develops a mass gap without breaking any lattice symmetry. This symmetric strong-coupling phase is separated from the symmetric weak-coupling phase by a narrow region of four-fermi coupling in which the system exhibits long-range correlations.


2018 ◽  
Vol 9 ◽  
pp. 1263-1271 ◽  
Author(s):  
Christopher Reeg ◽  
Daniel Loss ◽  
Jelena Klinovaja

There have recently been several experiments studying induced superconductivity in semiconducting two-dimensional electron gases that are strongly coupled to thin superconducting layers, as well as probing possible topological phases supporting Majorana bound states in such setups. We show that a large band shift is induced in the semiconductor by the superconductor in this geometry, thus making it challenging to realize a topological phase. Additionally, we show that while increasing the thickness of the superconducting layer reduces the magnitude of the band shift, it also leads to a more significant renormalization of the semiconducting material parameters and does not reduce the challenge of tuning into a topological phase.


1981 ◽  
Vol 59 (2) ◽  
pp. 225-230 ◽  
Author(s):  
G. Pantis ◽  
H. Fiedeldey ◽  
D. W. L. Sprung

The charge form factor of the model triton clearly exhibits the collapse which occurs in the triton for purely nonlocal two-body interactions with continuum bound states and approaches an asymptotic shape with increasing binding energy. However, partly nonlocal interactions with continuum bound states, which previously have been shown not to produce such a collapse, also show no evidence whatsoever of the presence of the two-particle continuum bound state in the triton charge form factor. In the physically interesting case of partly nonlocal interactions the occurrence of a continuum bound state in the two-body interactions therefore can be completely harmless in the three-body system.


Sign in / Sign up

Export Citation Format

Share Document