scholarly journals AN ALTERNATIVE VIEW ON THE ELECTROWEAK INTERACTIONS

2011 ◽  
Vol 26 (17) ◽  
pp. 2855-2864 ◽  
Author(s):  
XAVIER CALMET

We discuss an alternative to the Higgs mechanism which leads to gauge invariant masses for the electroweak bosons. The key idea is to reformulate the gauge invariance principle which, instead of being applied as usual at the level of the action, is applied at the level of the quantum fields. In other words, we define gauge invariant quantum fields which are used to build the action. In that framework, the Higgs field is not necessarily a physical degree of freedom but can merely be a dressing field that does not propagate. If the Higgs boson is not propagating, the weak interactions must become strongly coupled below 1 TeV and have a nontrivial fixed point and would thus be renormalizable at the nonperturbative level. On the other hand, if a gauge invariant Higgs boson is introduced in the model, its couplings to the fermions and the electroweak bosons can be quite different from those expected in the Standard Model.

2019 ◽  
Author(s):  
Vitaly Kuyukov

This paper analyses a method of producing the Higgs mass via the gravitational field. This approach has become very popular in recent years, as the consideration of other forces do not help in solving the problem of mass hierarchy. Not understand the difference between scales of the standard model and Grand unification theory. Here, we present a heuristic mechanism which eliminated this difference. The idea is that the density of the condensate of the Higgs is increased so that it is necessary to take into account self gravitational potential energy of the Higgs boson. The result is as follows. The mass of the Higgs is directly proportional to the cell density of the Higgs bosons. Or else the mass of the Higgs is inversely proportional to the cell volume, which is the Higgs boson in the condensate. The most interesting dimension of this cell condensation is equal to the scale of Grand unification. This formula naturally combines the scale of the standard model and Grand unification through gravitational condensation.


Author(s):  
Maarten Boonekamp ◽  
Matthias Schott

With the huge success of quantum electrodynamics (QED) to describe electromagnetic interactions in nature, several attempts have been made to extend the concept of gauge theories to the other known fundamental interactions. It was realized in the late 1960s that electromagnetic and weak interactions can be described by a single unified gauge theory. In addition to the photon, the single mediator of the electromagnetic interaction, this theory predicted new, heavy particles responsible for the weak interaction, namely the W and the Z bosons. A scalar field, the Higgs field, was introduced to generate their mass. The discovery of the mediators of the weak interaction in 1983, at the European Center for Nuclear Research (CERN), marked a breakthrough in fundamental physics and opened the door to more precise tests of the Standard Model. Subsequent measurements of the weak boson properties allowed the mass of the top quark and of the Higgs Boson to be predicted before their discovery. Nowadays, these measurements are used to further probe the consistency of the Standard Model, and to place constrains on theories attempting to answer still open questions in physics, such as the presence of dark matter in the universe or unification of the electroweak and strong interactions with gravity.


2011 ◽  
Vol 26 (21) ◽  
pp. 1571-1576 ◽  
Author(s):  
XAVIER CALMET

We emphasize that the electroweak interactions without a Higgs boson are very similar to quantum general relativity. The Higgs field could just be a dressing field and might not exist as a propagating particle. In that interpretation, the electroweak interactions without a Higgs boson could be renormalizable at the nonperturbative level because of a nontrivial fixed point. Tree-level unitarity in electroweak bosons scattering is restored by the running of the weak scale.


2013 ◽  
Vol 28 (02) ◽  
pp. 1330003 ◽  
Author(s):  
DANIEL GREEN

The Higgs field was first proposed almost 50 years ago. Twenty years ago the tools needed to discover the Higgs boson, the large hadron collider and the CMS and ATLAS experiments, were initiated. Data taking was begun in 2010 and culminated in the announcement of the discovery of a "Higgs-like" boson on 4 July 2012. This discovery completes the Standard Model (SM) of high energy physics, if it is indeed the hypothesized SM Higgs particle. Future data taking will explore the properties of the new 125 GeV particle to see if it has all the attributes of an SM Higgs and to explore the mechanism that maintains its "low" mass.


2019 ◽  
Author(s):  
Vitaly Kuyukov

This paper analyses a method of producing the Higgs mass via the gravitational field. This approach has become very popular in recent years, as the consideration of other forces do not help in solving the problem of mass hierarchy. Not understand the difference between scales of the standard model and Grand unification theory. Here, we present a heuristic mechanism which eliminated this difference. The idea is that the density of the condensate of the Higgs is increased so that it is necessary to take into account self gravitational potential energy of the Higgs boson. The result is as follows. The mass of the Higgs is directly proportional to the cell density of the Higgs bosons. Or else the mass of the Higgs is inversely proportional to the cell volume, which is the Higgs boson in the condensate. The most interesting dimension of this cell condensation is equal to the scale of Grand unification. This formula naturally combines the scale of the standard model and Grand unification through gravitational condensation.


Author(s):  
Mikhail Shaposhnikov

I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.


Author(s):  
Geoff Cottrell

‘Fundamental particles’ introduces the ultimate building blocks of matter, which include antimatter, and describes how the world can be understood in terms of around twenty different quantum fields. Most of the mass of normal matter can be explained by the energy in these quantum fields. Only a handful of elementary particles make up the world: quarks, leptons, and the force particles, which appear in the Standard Model of Particle Physics. The elementary particles get their masses by interacting with the all-pervasive Higgs field, but the dominant source of the mass of ordinary matter comes from the energy of the quark and gluon fields inside nucleons. The Standard Model is a towering achievement of science, but it is not complete.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Adrián Franco-Rubio ◽  
Guifré Vidal

2008 ◽  
Vol 17 (06) ◽  
pp. 1015-1030 ◽  
Author(s):  
B. A. ROBSON

The "electroweak connection", which forms one of the cornerstones of the Standard Model of particle physics, is formulated within the framework of the Generation Model. It is shown that the electroweak connection can be derived assuming that the weak interactions are effective interactions rather than fundamental interactions, arising from a U(1) × SU(2) local gauge invariance, which is spontaneously broken by a Higgs field.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
E. Cortina Gil ◽  
◽  
A. Kleimenova ◽  
E. Minucci ◽  
S. Padolski ◽  
...  

Abstract The NA62 experiment at the CERN SPS reports a study of a sample of 4 × 109 tagged π0 mesons from K+ → π+π0(γ), searching for the decay of the π0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4.4 × 10−9 is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model- independent upper limit on the branching ratio for the decay K+ → π+X, where X is a particle escaping detection with mass in the range 0.110–0.155 GeV/c2 and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming X to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson.


Sign in / Sign up

Export Citation Format

Share Document