scholarly journals NEUTRINO MASSES AND LEPTOGENESIS FROM EXTRA FERMIONS

2013 ◽  
Vol 28 (21) ◽  
pp. 1350104 ◽  
Author(s):  
DMITRY V. ZHURIDOV

Generation of the neutrino masses and leptogenesis (LG) in the standard model extended by the heavy Majorana fermions is considered. Classification of LG scenarios according to the new fermion mass spectra is given, where singlet–triplet LG is considered for the first time. The upper bound on the CP asymmetry relevant for LG with hierarchical heavy neutrinos (Davidson–Ibarra bound) is revised, and shown that in the case of one massless neutrino it essentially depends on the type of the light neutrino mass hierarchy. The resonant scenarios, which help to avoid the problem of extremely high reheating temperature in the early universe, are discussed. In particular, we present new simplified, generalized and detailed formulation of freed LG, which violates Davidson–Ibarra bound in a special class of models.

2012 ◽  
Vol 85 (1) ◽  
Author(s):  
Dilip Kumar Ghosh ◽  
R. S. Hundi

Author(s):  
Yoshiharu Kawamura

Abstract We propose a bottom-up approach in which a structure of high-energy physics is explored by accumulating existence proofs and/or no-go theorems in the standard model or its extension. As an illustration, we study fermion mass hierarchies based on an extension of the standard model with vector-like fermions. It is shown that the magnitude of elements of Yukawa coupling matrices can become $O(1)$ and a Yukawa coupling unification can be realized in a theory beyond the extended model, if vector-like fermions mix with three families. In this case, small Yukawa couplings in the standard model can be highly sensitive to a small variation of matrix elements, and it seems that the mass hierarchy occurs as a result of fine tuning.


2000 ◽  
Vol 15 (01) ◽  
pp. 29-39 ◽  
Author(s):  
KOICHI YOSHIOKA

Recently, various phenomenological implications of the existence of extra space–time dimensions have been investigated. In this letter, we construct a model with realistic fermion mass hierarchy with (large) extra dimensions beyond the usual four dimensions. In this model, it is assumed that some matter fields live in the bulk and the others are confined to our four-dimensional wall. It can naturally reproduce the quark and lepton mass hierarchy and mixing angles without any symmetry arguments. We also discuss some possibilities of obtaining suitable neutrino masses and mixings for the solar and atmospheric neutrino problems.


2013 ◽  
Vol 28 (05) ◽  
pp. 1350010 ◽  
Author(s):  
F. R. KLINKHAMER

It is pointed out (not for the first time) that the minimal Standard Model, without additional gauge-singlet right-handed neutrinos or isotriplet Higgs fields, allows for nonvanishing neutrino masses and mixing. The required interaction term is non-renormalizable and violates B-L conservation. The ultimate explanation of this interaction term may or may not rely on grand unification.


Author(s):  
Nobuhito Maru ◽  
Yoshiki Yatagai

Abstract Grand gauge-Higgs unification of 5D $SU(6)$ gauge theory on an orbifold $S^1/Z_2$ is discussed. The Standard Model (SM) fermions are introduced on one of the boundaries and some massive bulk fields are also introduced so that they couple to the SM fermions through the mass terms on the boundary. Integrating out the bulk fields generates SM fermion masses with exponentially small bulk mass dependences. The SM fermion masses except for the top quark are shown to be reproduced by mild tuning of the bulk masses. The one-loop Higgs potential is calculated and it is shown that electroweak symmetry breaking occurs by introducing additional bulk fields. The Higgs boson mass is also computed.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Kyrylo Bondarenko ◽  
Alexey Boyarsky ◽  
Juraj Klaric ◽  
Oleksii Mikulenko ◽  
Oleg Ruchayskiy ◽  
...  

Abstract The extension of the Standard Model with two gauge-singlet Majorana fermions can simultaneously explain two beyond-the-Standard-model phenomena: neutrino masses and oscillations, as well as the origin of the matter-antimatter asymmetry in the Universe. The parameters of such a model are constrained by the neutrino oscillation data, direct accelerator searches, big bang nucleosynthesis, and requirement of successful baryogenesis. We show that their combination still leaves an allowed region in the parameter space below the kaon mass. This region can be probed by the further searches of NA62, DUNE, or SHiP experiments.


2016 ◽  
Vol 25 (4) ◽  
pp. 291
Author(s):  
Vo Van Vien ◽  
Hoang Ngoc Long ◽  
Phan Ngoc Thu

We show that the neutrino mass matrix of the Zee-Babu model isable to fit the recent data on neutrino masses and mixingwith non-zero $\theta_{13}$ in the inverted neutrino mass hierarchy. The results show that the Majorana  phases are equal to zero and the Dirac phase ($\de$) ispredicted to either $0$ or $\pi$, i. e, there is no CP violation in the Zee-Babu model at the two loop level. The effective mass governingneutrinoless double beta decay and the sum of neutrino masses areconsistent with the recent analysis.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Michael J. Baker ◽  
Peter Cox ◽  
Raymond R. Volkas

Abstract Precision measurements of the Higgs couplings are, for the first time, directly probing the mechanism of fermion mass generation. The purpose of this work is to determine to what extent these measurements can distinguish between the tree-level mechanism of the Standard Model and the theoretically motivated alternative of radiative mass generation. Focusing on the third-family, we classify the minimal one-loop models and find that they fall into two general classes. By exploring several benchmark models in detail, we demonstrate that a radiative origin for the tau-lepton and bottom-quark masses is consistent with current observations. While future colliders will not be able to rule out a radiative origin, they can probe interesting regions of parameter space.


Sign in / Sign up

Export Citation Format

Share Document