scholarly journals Bagger–Witten line bundles on moduli spaces of elliptic curves

2016 ◽  
Vol 31 (35) ◽  
pp. 1650188 ◽  
Author(s):  
Wei Gu ◽  
Eric Sharpe

In this paper, we discuss Bagger–Witten line bundles over moduli spaces of SCFTs. We review how in general they are “fractional” line bundles, not honest line bundles, twisted on triple overlaps. We discuss the special case of moduli spaces of elliptic curves in detail. There, the Bagger–Witten line bundle does not exist as an ordinary line bundle, but rather is necessarily fractional. As a fractional line bundle, it is nontrivial (though torsion) over the uncompactified moduli stack, and its restriction to the interior, excising corners with enhanced stabilizers, is also fractional. It becomes an honest line bundle on a moduli stack defined by a quotient of the upper half plane by a metaplectic group, rather than [Formula: see text]. We review and compare to results of recent work arguing that well-definedness of the worldsheet metric implies that the Bagger–Witten line bundle admits a flat connection (which includes torsion bundles as special cases), and gives general arguments on the existence of universal structures on moduli spaces of SCFTs, in which superconformal deformation parameters are promoted to nondynamical fields ranging over the SCFT moduli space.

2010 ◽  
Vol 21 (04) ◽  
pp. 497-522 ◽  
Author(s):  
INDRANIL BISWAS ◽  
MAINAK PODDAR

Let X be a compact connected Riemann surface of genus at least two. Let r be a prime number and ξ → X a holomorphic line bundle such that r is not a divisor of degree ξ. Let [Formula: see text] denote the moduli space of stable vector bundles over X of rank r and determinant ξ. By Γ we will denote the group of line bundles L over X such that L⊗r is trivial. This group Γ acts on [Formula: see text] by the rule (E, L) ↦ E ⊗ L. We compute the Chen–Ruan cohomology of the corresponding orbifold.


2011 ◽  
Vol 63 (6) ◽  
pp. 1307-1327 ◽  
Author(s):  
Ivan Dimitrov ◽  
Ivan Penkov

AbstractA diagonal ind-group is a direct limit of classical affine algebraic groups of growing rank under a class of inclusions that contains the inclusionas a typical special case. If G is a diagonal ind-group and B ⊂ G is a Borel ind-subgroup, we consider the ind-variety G/B and compute the cohomology H𝓁(G/B,𝒪−λ) of any G-equivariant line bundle 𝒪−λ on G/B. It has been known that, for a generic λ, all cohomology groups of 𝒪−λ vanish, and that a non-generic equivariant line bundle 𝒪−λ has at most one nonzero cohomology group. The new result of this paper is a precise description of when Hj (G/B,𝒪−λ) is nonzero and the proof of the fact that, whenever nonzero, Hj (G/B,𝒪−λ) is a G-module dual to a highest weight module. The main difficulty is in defining an appropriate analog WB of the Weyl group, so that the action of WB on weights of G is compatible with the analog of the Demazure “action” of the Weyl group on the cohomology of line bundles. The highest weight corresponding to Hj (G/B,𝒪−λ) is then computed by a procedure similar to that in the classical Bott–Borel–Weil theorem.


2021 ◽  
Vol 15 (3) ◽  
Author(s):  
Changbao Pang ◽  
Antti Perälä ◽  
Maofa Wang

AbstractWe establish an embedding theorem for the weighted Bergman spaces induced by a positive Borel measure $$d\omega (y)dx$$ d ω ( y ) d x with the doubling property $$\omega (0,2t)\le C\omega (0,t)$$ ω ( 0 , 2 t ) ≤ C ω ( 0 , t ) . The characterization is given in terms of Carleson squares on the upper half-plane. As special cases, our result covers the standard weights and logarithmic weights. As an application, we also establish the boundedness of the area operator.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Marco Bertola

AbstractThe paper has two relatively distinct but connected goals; the first is to define the notion of Padé approximation of Weyl–Stiltjes transforms on an arbitrary compact Riemann surface of higher genus. The data consists of a contour in the Riemann surface and a measure on it, together with the additional datum of a local coordinate near a point and a divisor of degree g. The denominators of the resulting Padé-like approximation also satisfy an orthogonality relation and are sections of appropriate line bundles. A Riemann–Hilbert problem for a square matrix of rank two is shown to characterize these orthogonal sections, in a similar fashion to the ordinary orthogonal polynomial case. The second part extends this idea to explore its connection to integrable systems. The same data can be used to define a pairing between two sequences of line bundles. The locus in the deformation space where the pairing becomes degenerate for fixed degree coincides with the zeros of a “tau” function. We show how this tau function satisfies the Kadomtsev–Petviashvili hierarchy with respect to either deformation parameters, and a certain modification of the 2-Toda hierarchy when considering the whole sequence of tau functions. We also show how this construction is related to the Krichever construction of algebro-geometric solutions.


2017 ◽  
Vol 60 (3) ◽  
pp. 522-535 ◽  
Author(s):  
Oleksandr Iena ◽  
Alain Leytem

AbstractIn the Simpson moduli space M of semi-stable sheaves with Hilbert polynomial dm − 1 on a projective plane we study the closed subvariety M' of sheaves that are not locally free on their support. We show that for d ≥4 , it is a singular subvariety of codimension 2 in M. The blow up of M along M' is interpreted as a (partial) modification of M \ M' by line bundles (on support).


1963 ◽  
Vol 14 (2) ◽  
pp. 105-124 ◽  
Author(s):  
Derek F. Lawden

SummaryThe development during the last two decades of analytical techniques for the solution of problems relating to the optimisation of rocket trajectories is outlined and the present position in this field of research is summarised. It is shown that the determination of optimal trajectories in a general gravitational field can be expressed as a Mayer problem from the calculus of variations. The known solution to such a problem is stated and applied, first to the special case of the launching of an artificial satellite into a circular orbit with minimum expenditure of propellant and, secondly, to the general astronautical problem of the economical transfer of a rocket between two terminals in a gravitational field. The special cases when the field is uniform and when it obeys an inverse square law of attraction to a point are then considered, and the paper concludes with some remarks concerning areas in which further investigations are necessary.


2016 ◽  
Vol 797 ◽  
pp. 322-344 ◽  
Author(s):  
Yuriy A. Semenov ◽  
Guo Xiong Wu

A general similarity solution for water-entry problems of a wedge with its inner angle fixed and its sides in expansion is obtained with flow detachment, in which the speed of expansion is a free parameter. The known solutions for a wedge of a fixed length at the initial stage of water entry without flow detachment and at the final stage corresponding to Helmholtz flow are obtained as two special cases, at some finite and zero expansion speeds, respectively. An expanding horizontal plate impacting a flat free surface is considered as the special case of the general solution for a wedge inner angle equal to ${\rm\pi}$. An initial impulse solution for a plate of a fixed length is obtained as the special case of the present formulation. The general solution is obtained in the form of integral equations using the integral hodograph method. The results are presented in terms of free-surface shapes, streamlines and pressure distributions.


10.37236/6516 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Megumi Asada ◽  
Ryan Chen ◽  
Florian Frick ◽  
Frederick Huang ◽  
Maxwell Polevy ◽  
...  

Reay's relaxed Tverberg conjecture and Conway's thrackle conjecture are open problems about the geometry of pairwise intersections. Reay asked for the minimum number of points in Euclidean $d$-space that guarantees any such point set admits a partition into $r$ parts, any $k$ of whose convex hulls intersect. Here we give new and improved lower bounds for this number, which Reay conjectured to be independent of $k$. We prove a colored version of Reay's conjecture for $k$ sufficiently large, but nevertheless $k$ independent of dimension $d$. Pairwise intersecting convex hulls have severely restricted combinatorics. This is a higher-dimensional analogue of Conway's thrackle conjecture or its linear special case. We thus study convex-geometric and higher-dimensional analogues of the thrackle conjecture alongside Reay's problem and conjecture (and prove in two special cases) that the number of convex sets in the plane is bounded by the total number of vertices they involve whenever there exists a transversal set for their pairwise intersections. We thus isolate a geometric property that leads to bounds as in the thrackle conjecture. We also establish tight bounds for the number of facets of higher-dimensional analogues of linear thrackles and conjecture their continuous generalizations.


2021 ◽  
Vol 127 (3) ◽  
Author(s):  
Edoardo Ballico ◽  
Emanuele Ventura

We introduce the strength for sections of a line bundle on an algebraic variety. This generalizes the strength of homogeneous polynomials that has been recently introduced to resolve Stillman's conjecture, an important problem in commutative algebra. We establish the first properties of this notion and give some tool to obtain upper bounds on the strength in this framework. Moreover, we show some results on the usual strength such as the reducibility of the set of strength two homogeneous polynomials.


Author(s):  
Peter Scholze ◽  
Jared Weinstein

This introductory chapter provides an overview of Drinfeld's work on the global Langlands correspondence over function fields. Whereas the global Langlands correspondence is largely open in the case of number fields K, it is a theorem for function fields, due to Drinfeld and L. Lafforgue. The key innovation in this case is Drinfeld's notion of an X-shtuka (or simply shtuka). The Langlands correspondence for X is obtained by studying moduli spaces of shtukas. A large part of this course is about the definition of perfectoid spaces and diamonds. There is an important special case where the moduli spaces of shtukas are classical rigid-analytic spaces. This is the case of local Shimura varieties. Some examples of these are the Rapoport-Zink spaces.


Sign in / Sign up

Export Citation Format

Share Document