scholarly journals QCD monopole and sigma meson coupling

2017 ◽  
Vol 32 (18) ◽  
pp. 1750109
Author(s):  
Aiichi Iwazaki

Under the assumption of the Abelian dominance in QCD, we show that chiral condensate is locally present around a QCD monopole. The appearance of the chiral condensate around a GUT monopole was shown in the previous analysis of the Rubakov effect. We apply a similar analysis to the QCD monopole. It follows that the condensation of the monopole carrying the chiral condensate leads to the chiral symmetry breaking as well as quark confinement. To realize the result explicitly, we present a phenomenological linear sigma model coupled with the monopoles, in which the monopole condensation causes the chiral symmetry breaking as well as confinement. The monopoles are assumed to be described by a model of dual superconductor. Because the monopoles couple with mesons, we point out the presence of an observable color singlet monopole coupled with the mesons.

2016 ◽  
Vol 126 ◽  
pp. 04016
Author(s):  
Takahiro M. Doi ◽  
Krzysztof Redlich ◽  
Chihiro Sasaki ◽  
Hideo Suganuma

2010 ◽  
Vol 25 (01) ◽  
pp. 25-33 ◽  
Author(s):  
MYUNG-KI CHEOUN ◽  
C. Y. RYU

We evaluate mass differences between a neutron and a proton, and between a charged and a neutral meson by using a gauged linear sigma model retaining the chiral SU (2) L × SU (2) R × U (1)V symmetry. Masses of nucleons and relevant mesons are generated through the spontaneous and the explicit chiral symmetry breaking. Since our Lagrangian includes explicitly SU(2) isospin symmetry breaking term, it enables us to simultaneously consider the mass differences of a neutron and a proton, and a charged meson and a neutral one. Their reciprocal relations of the mass differences are also derived, where radiative corrections due to electromagnetic interactions are deliberately taken into account to exactly obtain the isospin symmetry breaking effect in the particle mass differences.


2017 ◽  
Vol 32 (23n24) ◽  
pp. 1750139 ◽  
Author(s):  
Aiichi Iwazaki

Under the assumption of Abelian dominance in QCD, we have shown that chiral condensate is locally present around each QCD monopole. The essence is that either charge or chirality of a quark is not conserved, when the low energy massless quark collides with QCD monopole. In reality, the charge is conserved so that the chirality is not conserved. Reviewing the presence of the local chiral condensate, we show by using chiral anomaly that chiral nonsymmetric quark pair production takes place when a color charge is putted in a vacuum with monopole condensation, while chiral symmetric pair production takes place in a vacuum with no monopole condensation. Our results strongly indicate that the chiral symmetry is broken by the monopole condensation.


2021 ◽  
Vol 36 (21) ◽  
pp. 2130012
Author(s):  
Michael Creutz

Quantum chromodynamics (QCD), the theory of the strong interactions, involves quarks interacting with non-Abelian gluon fields. This theory has many features that are difficult to impossible to see in conventional diagrammatic perturbation theory. This includes quark confinement, mass generation and chiral symmetry breaking. This paper is a colloquium level overview of the framework for understanding how these effects come about.


1997 ◽  
Vol 50 (1) ◽  
pp. 199 ◽  
Author(s):  
Hiroshi Toki ◽  
Shoichi Sasaki ◽  
Hiroko Ichie ◽  
Hideo Suganuma

Confinement and spontaneous chiral symmetry breaking are the most fundamental phenomena in quark nuclear physics, where hadrons and nuclei are described in terms of quarks and gluons. The dual Ginzburg–Landau (DGL) theory contains monopole fields as the most essential degrees of freedom. Their condensation in the vacuum is modelled to describe quark confinement in strong connection with QCD. We then demonstrate that the DGL theory is able to describe the spontaneous breakdown of chiral symmetry.


2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Yoshiki Kuroda ◽  
Masayasu Harada ◽  
Shinya Matsuzaki ◽  
Daisuke Jido

Abstract We propose a novel mechanism to reproduce the observed mass hierarchy for scalar mesons lighter than 1 GeV (called the inverse hierarchy), regarding them as mesons made of a quark and an anti-quark ($q\bar{q}$ mesons). The source is provided by the SU(3) flavor-symmetry breaking induced by the U(1) axial anomaly. In particular, the anomaly term including the explicit chiral symmetry breaking plays a significant role in the light scalar meson spectrum. To be concrete, we construct a linear sigma model for scalar mesons of $q\bar{q}$ type together with their pseudoscalar chiral partners, including an anomaly-induced explicit chiral symmetry-breaking term. We find that, due to the proposed mechanism, the inverse hierarchy, i.e., $m\left[ a_0 (980) \right] \simeq m\left[ f_0 (980) \right] > m \left[ K_0^\ast (700) \right] > m \left[ f_0(500) \right]$, is indeed realized. Consequently, the quark content of $f_0 (500)$ is dominated by the isoscalar $\bar uu+ \bar dd$ component, and $f_0 (980)$ by the strange quark bilinear one, $s\bar{s}$.


2010 ◽  
Vol 25 (27n28) ◽  
pp. 5162-5174 ◽  
Author(s):  
ZOLTÁN FODOR ◽  
KIERAN HOLLAND ◽  
JULIUS KUTI ◽  
DÁNIEL NÓGRÁDI ◽  
CHRIS SCHROEDER

We present selected new results on chiral symmetry breaking in nearly conformal gauge theories with fermions in the fundamental representation of the SU (3) color gauge group. We found chiral symmetry breaking (χSB) for all flavors between Nf = 4 and Nf = 12 with most of the results discussed here for Nf = 4, 8, 12 as we approach the conformal window. To identify χSB we apply several methods which include, within the framework of chiral perturbation theory, the analysis of the Goldstone spectrum in the p -regime and the spectrum of the fermion Dirac operator with eigenvalue distributions of random matrix theory in the ϵ-regime. Chiral condensate enhancement is observed with increasing Nf when the electroweak symmetry breaking scale F is held fixed in technicolor language. Important finite-volume consistency checks from the theoretical understanding of the SU(Nf) rotator spectrum of the δ-regime are discussed. We also consider these gauge theories at Nf = 16 inside the conformal window. Our work on the running coupling is presented separately.1


2017 ◽  
Vol 137 ◽  
pp. 04003 ◽  
Author(s):  
Hideo Suganuma ◽  
Takahiro M. Doi ◽  
Krzysztof Redlich ◽  
Chihiro Sasaki

2006 ◽  
Vol 21 (04) ◽  
pp. 859-864 ◽  
Author(s):  
J. C. Osborn ◽  
K. Splittorff ◽  
J. J. M. Verbaarschot

We consider chiral symmetry breaking at nonzero chemical potential and discuss the relation with the spectrum of the Dirac operator. We solve the so called Silver Blaze Problem that the chiral condensate at zero temperature does not depend on the chemical potential while this is not the case for the Dirac spectrum and the weight of the partition function.


Sign in / Sign up

Export Citation Format

Share Document