Holographic helical superconductor with higher curvature corrections

2018 ◽  
Vol 33 (01) ◽  
pp. 1850002 ◽  
Author(s):  
Subir Mukhopadhyay ◽  
Chandrima Paul

We study [Formula: see text] gauge theory with Chern–Simons term, coupled to scalar field in adjoint, in Einstein–Gauss–Bonnet gravity. We explore phases of holographic superconductor in terms of the condensates and free energies in the background of AdS black hole and AdS soliton. In the case of black hole, we find with increasing strength of higher curvature terms, transition temperature decreases. For AdS soliton, the critical value of chemical potential increases as the higher curvature terms dominate.

2017 ◽  
Vol 32 (13) ◽  
pp. 1750064 ◽  
Author(s):  
Subir Mukhopadhyay ◽  
Chandrima Paul

We study SU(2)[Formula: see text]×[Formula: see text]U(1) gauge theory with Chern–Simons term, coupled to scalar field in adjoint, in a probe approximation by ignoring back reaction on metric. Considering a simple ansatz for non-Abelian gauge field with helical structure, we find it admits s-wave and p-wave phases along with their coexistence. We study free energies for different phases along with those for p-wave phases for different values of pitch and frequency dependence of optical conductivities below critical temperature.


Author(s):  
Shobhit Sachan ◽  
Sanjay Siwach

We investigate the thermodynamics of confinement/deconfinement transition in soft wall model of QCD with Gauss-Bonnet corrections using AdS/CFT correspondence. In bulk AdS space-time the transition is geometric and is known as Hawking-Page transition. The Hawking-Page transition between two geometries, namely charged AdS black hole and thermally charged AdS have been studied with Gauss-Bonnet corrections up-to first order. The Gauss-Bonnet coupling modifies the transition temperature of the system, but qualitative features remain unchanged. We obtain the curves between chemical potential and transition temperature for different values of Gauss-Bonnet couplings. We find that there exist a point in μ-T plane where lines with different value of Gauss-Bonnet coupling cross each other. This point may be the onset of the transition from first order to cross over behavior. The results are compared with that of the hard wall model.


2016 ◽  
Vol 26 (06) ◽  
pp. 1750046
Author(s):  
Yan Peng ◽  
Tao Chen ◽  
Guohua Liu ◽  
Pengwei Ma

We generalize the holographic superconductor model with dark matter sector by including the Stückelberg mechanism in the four-dimensional anti-de Sitter (AdS) black hole background away from the probe limit. We study effects of the dark matter sector on the [Formula: see text]-wave scalar condensation and find that the dark matter sector affects the critical phase transition temperature and also the order of phase transitions. At last, we conclude that the dark matter sector brings richer physics in this general metal/superconductor system.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Shao-Jun Zhang

AbstractWe study massive scalar field perturbation on Kerr black holes in dynamical Chern–Simons gravity by performing a $$(2+1)$$ ( 2 + 1 ) -dimensional simulation. Object pictures of the wave dynamics in time domain are obtained. The tachyonic instability is found to always occur for any nonzero black hole spin and any scalar field mass as long as the coupling constant exceeds a critical value. The presence of the mass term suppresses or even quench the instability. The quantitative dependence of the onset of the tachyonic instability on the coupling constant, the scalar field mass and the black hole spin is given numerically.


1992 ◽  
Vol 70 (5) ◽  
pp. 301-304 ◽  
Author(s):  
D. G. C. McKeon

We investigate a three-dimensional gauge theory modeled on Chern–Simons theory. The Lagrangian is most compactly written in terms of a two-index tensor that can be decomposed into fields with spins zero, one, and two. These all mix under the gauge transformation. The background-field method of quantization is used in conjunction with operator regularization to compute the real part of the two-point function for the scalar field.


1999 ◽  
Vol 14 (04) ◽  
pp. 505-520 ◽  
Author(s):  
SHARMANTHIE FERNANDO ◽  
FREYDOON MANSOURI

We study anti-de Sitter black holes in 2 + 1 dimensions in terms of Chern–Simons gauge theory of the anti-de Sitter group coupled to a source. Taking the source to be an anti-de Sitter state specified by its Casimir invariants, we show how all the relevant features of the black hole are accounted for. The requirement that the source be a unitary representation leads to a discrete tower of excited states which provide a microscopic model for the black hole.


2012 ◽  
Vol 27 (02) ◽  
pp. 1250010 ◽  
Author(s):  
XIAO-XIONG ZENG ◽  
XIAN-MING LIU ◽  
WEN-BIAO LIU

Using the classical time-average approximation to deal with equation of motion for scalar field, holographic superconductor with a time-dependent chemical potential is studied analytically in probe limit. On the basis of the minimum eigenvalue of Sturm–Liouville equation, concrete values of the phase transition temperature and critical frequency are obtained. The condensed solution in high frequency regime is also calculated. It is shown that the phase transition temperature enhances and the superconductivity can be got easier as the frequency of the time-dependent chemical potential, which should be larger than the critical frequency, rises.


2015 ◽  
Vol 30 (13) ◽  
pp. 1550069
Author(s):  
Yan Peng ◽  
Guohua Liu

We study general models for holographic superconductors with higher correction terms of the scalar field in the four-dimensional AdS black hole background including the matter fields' backreaction on the metric. We explore the effects of the model parameters on the scalar condensation and find that different values of model parameters can determine the order of phase transitions. Moreover, we find that the higher correction terms provide richer physics in the phase transition diagram.


2020 ◽  
Vol 80 (11) ◽  
Author(s):  
Tanay K. Dey ◽  
Subir Mukhopadhyay

AbstractWe consider asymptotically AdS black hole solutions in Einstein Gauss Bonnet gravity in presence of string clouds. As in the case of black hole solutions in Gauss Bonnet gravity, it admits three black hole solutions in presence of string clouds as well within a region of the parameter space. Using holography, we have studied the quark–antiquark distance and binding energy in the dual gauge theory.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Almendra Aragón ◽  
P. A. González ◽  
Eleftherios Papantonopoulos ◽  
Yerko Vásquez

AbstractWe study the propagation of scalar fields in the background of an asymptotically de Sitter black hole solution in f(R) gravity. The aim of this work is to analyze in modified theories of gravity the existence of an anomalous decay rate of the quasinormal modes (QNMs) of a massive scalar field which was recently reported in Schwarzschild black hole backgrounds, in which the longest-lived modes are the ones with higher angular number, for a scalar field mass smaller than a critical value, while that beyond this value the behavior is inverted. We study the QNMs for various overtone numbers and they depend on a parameter $$\beta $$ β which appears in the metric and characterizes the f(R) gravity. For small $$\beta $$ β , i.e. small deviations from the Schwarzschild–dS black hole the anomalous behavior in the QNMs is present for the photon sphere modes, and the critical value of the mass of the scalar field depends on the parameter $$\beta $$ β while for large $$\beta $$ β , i.e. large deviations, the anomalous behavior and the critical mass does not appear. Also, the critical mass of the scalar field increases when the overtone number increases until the f(R) gravity parameter $$\beta $$ β approaches the near extremal limit at which the critical mass of the scalar field does not depend anymore on the overtone number. The imaginary part of the quasinormal frequencies is always negative leading to a stable propagation of the scalar fields in this background.


Sign in / Sign up

Export Citation Format

Share Document