scholarly journals Flavor physics: Precision as an avenue to discovery

2020 ◽  
Vol 35 (01) ◽  
pp. 1930018
Author(s):  
Diego Guadagnoli

This paper describes the work pursued in the years 2008–2013 on improving the Standard Model prediction of selected flavor-physics observables. The latter includes: (1) [Formula: see text], that quantifies indirect CP violation in the [Formula: see text] system and (2) the very rare decay [Formula: see text], recently measured at the LHC. Concerning point (1), the paper describes our reappraisal of the long-distance contributions to [Formula: see text],[Formula: see text] that have permitted to unveil a potential tension between CP violation in the [Formula: see text]- and [Formula: see text]-system. Concerning point (2), the paper gives a detailed account of various systematic effects pointed out in Ref. 4 and affecting the Standard Model [Formula: see text] decay rate at the level of 10% — hence large enough to be potentially misinterpreted as nonstandard physics, if not properly included. The paper further describes the multifaceted importance of the [Formula: see text] decays as new physics probes, for instance how they compare with [Formula: see text]-peak observables at LEP, following the effective-theory approach of Ref. 5. Both cases (1) and (2) offer clear examples in which the pursuit of precision in Standard Model predictions offered potential avenues to discovery. Finally, this paper describes the impact of the above results on the literature, and what is the further progress to be expected on these and related observables.

2006 ◽  
Vol 21 (27) ◽  
pp. 5381-5403 ◽  
Author(s):  
Ian Shipsey

The role of charm in testing the Standard Model description of quark mixing and CP violation through measurements of lifetimes, decay constants and semileptonic form factors is reviewed. Together with Lattice QCD, charm has the potential this decade to maximize the sensitivity of the entire flavor physics program to new physics and pave the way for understanding physics beyond the Standard Model at the LHC in the coming decade. The status of indirect searches for physics beyond the Standard Model through charm mixing, CP-violation and rare decays is also reported.


2005 ◽  
Vol 20 (22) ◽  
pp. 5119-5132 ◽  
Author(s):  
I. SHIPSEY

The role of charm in testing the Standard Model description of quark mixing and CP violation through measurements of lifetimes, decay constants and semileptonic form factors is reviewed. Together with Lattice QCD, charm has the potential this decade to maximize the sensitivity of the entire flavor physics program to new physics. and pave the way for understanding physics beyond the Standard Model at the LHC in the coming decade. The status of indirect searches for physics beyond the Standard Model through charm mixing, CP-violation and rare decays is also reported.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Victor Ilisie

Abstract In this work we analyse the forward-backward asymmetry of the h → V f f′ decay in the Aligned two-Higgs Doublet Model. The Standard Model prediction for this asymmetry for V = W is small, as it suffers from Yukawa suppression and is absent for V = Z. This does not necessarily have to hold true in the Aligned model where these contributions can in principle be re-enhanced through the independent alignment factors ςf. In this analysis we conclude that, due to the additional contributions corresponding to the Aligned two-Higgs Doublet Model together with extra sources of CP-violation for the V = Z channel, the Standard Model predictions can be significantly modified in a great region of the parameter space. These deviations, that could be potentially measured at the High Luminosity LHC or future Higgs factories, would be a clear signal of new physics, and would shed new light on the possible extensions of the Standard Model and new sources of CP-violation.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Jason Aebischer ◽  
Benjamín Grinstein

Abstract Applying an operator product expansion approach we update the Standard Model prediction of the Bc lifetime from over 20 years ago. The non-perturbative velocity expansion is carried out up to third order in the relative velocity of the heavy quarks. The scheme dependence is studied using three different mass schemes for the $$ \overline{b} $$ b ¯ and c quarks, resulting in three different values consistent with each other and with experiment. Special focus has been laid on renormalon cancellation in the computation. Uncertainties resulting from scale dependence, neglecting the strange quark mass, non-perturbative matrix elements and parametric uncertainties are discussed in detail. The resulting uncertainties are still rather large compared to the experimental ones, and therefore do not allow for clear-cut conclusions concerning New Physics effects in the Bc decay.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Stefan Antusch ◽  
A. Hammad ◽  
Ahmed Rashed

Abstract We investigate the sensitivity of electron-proton (ep) colliders for charged lepton flavor violation (cLFV) in an effective theory approach, considering a general effective Lagrangian for the conversion of an electron into a muon or a tau via the effective coupling to a neutral gauge boson or a neutral scalar field. For the photon, the Z boson and the Higgs particle of the Standard Model, we present the sensitivities of the LHeC for the coefficients of the effective operators, calculated from an analysis at the reconstructed level. As an example model where such flavor changing neutral current (FCNC) operators are generated at loop level, we consider the extension of the Standard Model by sterile neutrinos. We show that the LHeC could already probe the LFV conversion of an electron into a muon beyond the current experimental bounds, and could reach more than an order of magnitude higher sensitivity than the present limits for LFV conversion of an electron into a tau. We discuss that the high sensitivities are possible because the converted charged lepton is dominantly emitted in the backward direction, enabling an efficient separation of the signal from the background.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 191
Author(s):  
Alexander Bednyakov ◽  
Alfiia Mukhaeva

Flavour anomalies have attracted a lot of attention over recent years as they provide unique hints for possible New Physics. Here, we consider a supersymmetric (SUSY) extension of the Standard Model (SM) with an additional anomaly-free gauge U(1) group. The key feature of our model is the particular choice of non-universal charges to the gauge boson Z′, which not only allows a relaxation of the flavour discrepancies but, contrary to previous studies, can reproduce the SM mixing matrices both in the quark and lepton sectors. We pay special attention to the latter and explicitly enumerate all parameters relevant for our calculation in the low-energy effective theory. We find regions in the parameter space that satisfy experimental constraints on meson mixing and LHC Z′ searches and can alleviate the flavour anomalies. In addition, we also discuss the predictions for lepton-flavour violating decays B+→K+μτ and B+→K+eτ.


2013 ◽  
Vol 22 (03) ◽  
pp. 1330006 ◽  
Author(s):  
Z. J. AJALTOUNI ◽  
E. DI SALVO

This review paper stresses the possible connection between time-reversal violation and new physics processes beyond the standard model. In particular, this violation is proposed as an alternative to CP violation in the search for such unkown processes. Emphasis is put on the weak decays of heavy hadrons, especially beauty ones. Specific methods for extracting useful parameters from experimental data are elaborated in order to test TR symmetry. These methods could be used successfully in the analysis of the LHC data.


2018 ◽  
Vol 33 (32) ◽  
pp. 1850194
Author(s):  
Aritra Biswas ◽  
Sanjoy Mandal ◽  
Nita Sinha

We show that for a heavy vector-like quark model with a down type isosinglet, branching ratio for [Formula: see text] decay is enhanced by more than [Formula: see text] as compared to that in the Standard model when QCD corrections to next-to-leading order are incorporated. In a left–right symmetric model (LRSM) along with a heavy vector-like fermion, enhancement of this order can be achieved at the bare (QCD uncorrected) level itself. We propose that a measurement of the photon polarization could be used to signal the presence of such new physics in spite of the large long distance effects. We find that there is a large region within the allowed parameter space of the model with a vector-like quark and an additional left–right symmetry, where, the photon polarization can be dominantly right-handed.


2006 ◽  
Vol 21 (08n09) ◽  
pp. 1738-1749 ◽  
Author(s):  
LUCA SILVESTRINI

We review the status of rare decays and CP violation in extensions of the Standard Model. We analyze the determination of the unitarity triangle and the model-independent constraints on new physics that can be derived from this analysis. We find stringent bounds on new contributions to [Formula: see text] and [Formula: see text] mixing, pointing either to models of minimal flavour violation or to models with new sources of flavour and CP violation in b → s transitions. We discuss the status of the universal unitarity triangle in minimal flavour violation, and study rare decays in this class of models. We then turn to supersymmetric models with nontrivial mixing between second and third generation squarks, discuss the present constraints on this mixing and analyze the possible effects on CP violation in b → s nonleptonic decays and on [Formula: see text] mixing. We conclude presenting an outlook on Lepton-Photon 2009.


2003 ◽  
Vol 18 (30) ◽  
pp. 2083-2098
Author(s):  
Gabriella Sciolla

Recent measurements of time-dependent CP-asymmetries at the B-factories have led to substantial progress in our understanding of CP-violation. In this paper, we review some of these experimental results and discuss their implications in the Standard Model and their sensitivity to New Physics.


Sign in / Sign up

Export Citation Format

Share Document