scholarly journals Accelerated expansion of the universe from the perspective of inhomogeneous cosmology

2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040037
Author(s):  
Irina Bormotova ◽  
Elena Kopteva ◽  
Mariia Churilova ◽  
Zdenek Stuchlik

We present a special case of the Stephani solution with spherical symmetry while considering different values of spatial curvature. We investigate the dynamics of the universe evolution in our model, build the R–T-regions for the resulting spacetime and analyze the behavior of the deceleration parameter. The singularities of the model are also discussed. The geometry of the spatial part of the obtained solution is explored.

2020 ◽  
Vol 17 (07) ◽  
pp. 2050098 ◽  
Author(s):  
Umesh Kumar Sharma ◽  
Shikha Srivastava ◽  
A. Beesham

In this paper, a new form of dark energy, known as Tsallis holographic dark energy (THDE), with IR cutoff as Hubble horizon proposed by Tavayef et al. Tsallis holographic dark energy, Phys. Lett. B 781 (2018) 195 has been explored in Bianchi-III model with the matter. By taking the time subordinate deceleration parameter, the solution of Einstein’s field equation is found. The Universe evolution from earlier decelerated to the current accelerated phase is exhibited by the deceleration parameter acquired in the THDE model. It can be seen that the derived THDE model is related to an accelerating Universe with quintessence ([Formula: see text]). The squared sound speed [Formula: see text] also suggests that the THDE model is classically stable at present. In addition, the quintessence phase of the THDE model is analyzed with swampland conjecture to reformulate the accelerating expansion of the Universe.


2012 ◽  
Vol 27 (18) ◽  
pp. 1250100 ◽  
Author(s):  
A. KHODAM-MOHAMMADI ◽  
M. MALEKJANI ◽  
M. MONSHIZADEH

In this work, we reconstruct the f(R) modified gravity for different ghost and generalized-ghost dark energy (DE) models in FRW flat universe, which describes the accelerated expansion of the universe. The equation of state and deceleration parameter of reconstructed f(R) gravity have been calculated. The equation of state and deceleration parameter of reconstructed f(R)-ghost/generalized-ghost DE, have been calculated. We show that the corresponding f(R) gravity of ghost/generalized-ghost DE model can behave like phantom or quintessence. Also the transition between deceleration to acceleration regime is indicated by deceleration parameter diagram for reconstructed f(R) generalized-ghost DE model.


Author(s):  
Michael Kachelriess

The contribution of vacuum fluctuations to the cosmological constant is reconsidered studying the dependence on the used regularisation scheme. Then alternative explanations for the observed accelerated expansion of the universe in the present epoch are introduced which either modify gravity or add a new component of matter, dubbed dark energy. The chapter closes with some comments on attempts to quantise gravity.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 163
Author(s):  
Verónica Motta ◽  
Miguel A. García-Aspeitia ◽  
Alberto Hernández-Almada ◽  
Juan Magaña ◽  
Tomás Verdugo

The accelerated expansion of the Universe is one of the main discoveries of the past decades, indicating the presence of an unknown component: the dark energy. Evidence of its presence is being gathered by a succession of observational experiments with increasing precision in its measurements. However, the most accepted model for explaining the dynamic of our Universe, the so-called Lambda cold dark matter, faces several problems related to the nature of such energy component. This has led to a growing exploration of alternative models attempting to solve those drawbacks. In this review, we briefly summarize the characteristics of a (non-exhaustive) list of dark energy models as well as some of the most used cosmological samples. Next, we discuss how to constrain each model’s parameters using observational data. Finally, we summarize the status of dark energy modeling.


2002 ◽  
Vol 17 (05) ◽  
pp. 295-302
Author(s):  
SUBENOY CHAKRABORTY

In this paper it is shown that the present accelerated expansion of the Universe can be explained only by considering variation of the speed of light, without taking into account the cosmological constant or quintessence matter.


2021 ◽  
pp. 2150114
Author(s):  
Manuel Urueña Palomo ◽  
Fernando Pérez Lara

The vacuum catastrophe results from the disagreement between the theoretical value of the energy density of the vacuum in quantum field theory and the estimated one observed in cosmology. In a similar attempt in which the ultraviolet catastrophe was solved, we search for the value of the cosmological constant by brute-force through computation. We explore combinations of the fundamental constants in physics performing a dimensional analysis, in search of an equation resulting in the measured energy density of the vacuum or cosmological constant that is assumed to cause the accelerated expansion of the universe.


2018 ◽  
Vol 33 (40) ◽  
pp. 1850240
Author(s):  
Babur M. Mirza

We present here a general relativistic mechanism for accelerated cosmic expansion and the Hubble’s parameter. It is shown that spacetime vorticity coupled to the magnetic field density in galaxies causes the galaxies to recede from one another at a rate equal to the Hubble’s constant. We therefore predict an oscillatory universe, with zero curvature, without assuming violation of Newtonian gravity at large distances or invoking dark energy/dark matter hypotheses. The value of the Hubble’s constant, along with the scale of expansion, as well as the high isotropy of CMB radiation are deduced from the model.


2014 ◽  
Vol 74 (11) ◽  
Author(s):  
Ricardo Aguila ◽  
José Edgar Madriz Aguilar ◽  
Claudia Moreno ◽  
Mauricio Bellini

2021 ◽  
pp. 2150052
Author(s):  
Qihong Huang ◽  
Ruanjing Zhang ◽  
Jun Chen ◽  
He Huang ◽  
Feiquan Tu

In this paper, we analyze the universe evolution and phase space behavior of the Umami Chaplygin model, where the Umami Chaplygin fluid replaces both a dark energy and a dark and baryonic matter. We find the Umami Chaplygin model can be stable against perturbations under some conditions and can be used to explain the late-time cosmic acceleration. The results of phase space analysis show that there exists a late-time accelerated expansion attractor with [Formula: see text], which indicates the Umami Chaplygin fluid can behave as a cosmological constant. Moreover, the Umami Chaplygin model can describe the expansion history of the universe. The evolutionary trajectories of the statefinder diagnostic pairs and the finite time future singularities are also discussed.


Sign in / Sign up

Export Citation Format

Share Document