scholarly journals TeV-scale resonant leptogenesis with new scaling ansatz on neutrino Dirac mass matrix from A4 flavor symmetry

2020 ◽  
Vol 35 (17) ◽  
pp. 2050077
Author(s):  
H. B. Benaoum ◽  
S. H. Shaglel

We propose a new scaling ansatz in the neutrino Dirac mass matrix to explain the low energy neutrino oscillations data, baryon number asymmetry and neutrinoless double beta decay. In this work, a full reconstruction of the neutrino Dirac mass matrix has been realized from the low energy neutrino oscillations data based on type-I seesaw mechanism. A concrete model based on [Formula: see text] flavor symmetry has been considered to generate such a neutrino Dirac mass matrix and imposes a relation between the two scaling factors. In this model, the right-handed Heavy Majorana neutrino masses are quasi-degenerate at TeV mass scales. Extensive numerical analysis studies have been carried out to constrain the parameter space of the model from the low energy neutrino oscillations data. It has been found that the parameter space of the Dirac mass matrix elements lies near or below the MeV region and the scaling factor [Formula: see text] has to be less than 10. Furthermore, we have examined the possibility for simultaneous explanation of both neutrino oscillations data and the observed baryon number asymmetry in the Universe. Such an analysis gives further restrictions on the parameter space of the model, thereby explaining the correct neutrino data as well as the baryon number asymmetry via a resonant leptogenesis scenario. Finally, we show that the allowed space for the effective Majorana neutrino mass [Formula: see text] is also constrained in order to account for the observed baryon asymmetry.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Apriadi Salim Adam ◽  
Akmal Ferdiyan ◽  
Mirza Satriawan

We propose a new L-R symmetry model where the L-R symmetry transformation reverses both the L-R chirality and the local quantum number. We add to the model a global quantum number F whose value is one for fermions (minus one for antifermion) and vanishes for bosons. For each standard model (SM) particle, we have the corresponding L-R dual particle whose mass is very large and which should have decayed at the current low energy level. Due to the global quantum number F, there is no Majorana neutrino in the model but a Dirac seesaw mechanism can still occur and the usual three active neutrino oscillation can still be realized. We add two leptoquarks and their L-R duals, for generating the baryon number asymmetry and for facilitating the decay of the L-R dual particles. The decay of the L-R dual particles will produce a large entropy to the SM sector and give a mechanism for avoiding the big bang nucleosynthesis constraint.


2007 ◽  
Vol 2007 ◽  
pp. 1-17 ◽  
Author(s):  
Marco Picariello

We compute the effect of nondiagonal neutrino mass inli→ljγin Supersymmetry (SUSY) theories with nontrivial quark-lepton complementarity and a flavor symmetry. The correlation matrixVM=UCKMUPMNSis such that its (1,3) entry, as preferred by the present experimental data, is zero. We do not assume thatVMis bimaximal. Quark-lepton complementarity and the flavor symmetry strongly constrain the theory and we obtain a clear prediction for the contribution toμ→eγand theτdecaysτ→eγandτ→μγ. If the Dirac neutrino Yukawa couplings are degenerate but the low-energy neutrino masses are not degenerate, then the lepton decays are related among them by theVMentries. On the other hand, if the Dirac neutrino Yukawa couplings are hierarchical or the low-energy neutrino masses are degenerate, then the prediction for the lepton decays comes from theUCKMhierarchy.


2017 ◽  
Vol 96 (5) ◽  
Author(s):  
Debasish Borah ◽  
Monojit Ghosh ◽  
Shivani Gupta ◽  
Sushant K. Raut

2013 ◽  
Vol 28 (07) ◽  
pp. 1350016 ◽  
Author(s):  
TERUYUKI KITABAYASHI

We estimate the baryon–photon ratio in the Universe via the leptogenesis scenario in the framework of the minimal seesaw model with a minimally modified bipair neutrino mixing. We assume that one of the elements of the 3 × 2 Dirac mass matrix mD is exactly zero. It turns out that the lepton asymmetry as well as baryon number of the Universe definitely depends on the reactor neutrino mixing angle in the cases of (mD)11 = 0 and (mD)12 = 0. The allowed region of the Majorana CP phase is separated into three regions related to the assumption of either (mD)11 = 0, (mD)21, 31 = 0 or (mD)12 = 0.


2008 ◽  
Vol 23 (21) ◽  
pp. 3412-3415
Author(s):  
SHU LUO ◽  
ZHI-ZHONG XING

Current experimental data allow the zero value for one neutrino mass, either m1 = 0 or m3 = 0. This observation implies that a realistic neutrino mass texture can be established by starting from the limit (a) m1 = m2 = 0 and m3 ≠ 0 or (b) m1 = m2 ≠ 0 and m3 = 0. In both cases, we may introduce a particular perturbation which ensures the resultant neutrino mixing matrix to be the tri-bimaximal mixing pattern or its viable variations. We find that it is natural to incorporate this kind of neutrino mass matrix in the minimal Type-II seesaw model with only one heavy right-handed Majorana neutrino N. We show that it is possible to account for the cosmological baryon number asymmetry in the m3 = 0 case via thermal leptogenesis, in which the CP-violating asymmetry of N decays is attributed to the electron flavor.


2016 ◽  
Vol 31 (13) ◽  
pp. 1650080 ◽  
Author(s):  
Weijian Wang ◽  
Shu-Yuan Guo ◽  
Zhi-Gang Wang

In this paper, we study the cofactor 2 zero neutrino mass matrices with the Fritzsch-type structure in charged lepton mass matrix (CLMM). In the numerical analysis, we perform a scan over the parameter space of all the 15 possible patterns to get a large sample of viable scattering points. Among the 15 possible patterns, three of them can accommodate the latest lepton mixing and neutrino mass data. We compare the predictions of the allowed patterns with their counterparts with diagonal CLMM. In this case, the severe cosmology bound on the neutrino mass set a strong constraint on the parameter space, rendering two patterns only marginally allowed. The Fritzsch-type CLMM will have impact on the viable parameter space and give rise to different phenomenological predictions. Each allowed pattern predicts the strong correlations between physical variables, which is essential for model selection and can be probed in future experiments. It is found that under the no-diagonal CLMM, the cofactor zeros structure in neutrino mass matrix is unstable as the running of renormalization group (RG) from seesaw scale to the electroweak scale. A way out of the problem is to propose the flavor symmetry under the models with a TeV seesaw scale. The inverse seesaw model and a loop-induced model are given as two examples.


2007 ◽  
Vol 22 (31) ◽  
pp. 5860-5874 ◽  
Author(s):  
MARCO PICARIELLO ◽  
BHAG C. CHAUHAN ◽  
JOÃO PULIDO ◽  
EMILIO TORRENTE-LUJAN

The complementarity between the quark and lepton mixing matrices is shown to provide robust predictions. We obtain these predictions by first showing that the matrix VM, product of the quark (CKM) and lepton (PMNS) mixing matrices, may have a zero (1,3) entry which is favored by experimental data. We obtain that any theoretical model with a vanishing (1,3) entry of VM that is in agreement with quark data, solar, and atmospheric mixing angle leads to [Formula: see text]. This value is consistent with the present 90% CL experimental upper limit. We also investigate the prediction on the lepton phases. We show that the actual evidence, under the only assumption that the correlation matrix VM product of CKM and PMNS has a zero in the entry (1, 3), gives us a prediction for the three CP-violating invariants J, S1, and S2. A better determination of the lepton mixing angles will give stronger prediction for the CP-violating invariants in the lepton sector. These will be tested in the next generation experiments. Finally we compute the effect of non diagonal neutrino mass in li → ljγ in SUSY theories with non trivial Quark-Lepton complementarity and a flavor symmetry. The Quark-Lepton complementarity and the flavor symmetry strongly constrain the theory and we obtain a clear prediction for the contribution to μ → eγ and the τ decays τ → eγ and τ → μγ. If the Dirac neutrino Yukawa couplings are degenerate but the low energy neutrino masses are not degenerate, then the lepton decays are related among them by the VM entries. On the other hand, if the Dirac neutrino Yukawa couplings are hierarchical or the low energy neutrino masses are degenerate, then the prediction for the lepton decays comes from the CKM hierarchy.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Kevin J. Kelly ◽  
Pedro A. N. Machado ◽  
Alberto Marchionni ◽  
Yuber F. Perez-Gonzalez

Abstract We propose the operation of LEvEL, the Low-Energy Neutrino Experiment at the LHC, a neutrino detector near the Large Hadron Collider Beam Dump. Such a detector is capable of exploring an intense, low-energy neutrino flux and can measure neutrino cross sections that have previously never been observed. These cross sections can inform other future neutrino experiments, such as those aiming to observe neutrinos from supernovae, allowing such measurements to accomplish their fundamental physics goals. We perform detailed simulations to determine neutrino production at the LHC beam dump, as well as neutron and muon backgrounds. Measurements at a few to ten percent precision of neutrino-argon charged current and neutrino-nucleus coherent scattering cross sections are attainable with 100 ton-year and 1 ton-year exposures at LEvEL, respectively, concurrent with the operation of the High Luminosity LHC. We also estimate signal and backgrounds for an experiment exploiting the forward direction of the LHC beam dump, which could measure neutrinos above 100 GeV.


Sign in / Sign up

Export Citation Format

Share Document