Charged thin-shell wormholes with quintessence effects

2021 ◽  
Vol 36 (26) ◽  
Author(s):  
Saadia Mumtaz

This work studies the theoretical construction of charged quintessence thin-shell wormholes using Israel thin-shell approach. The stability of these wormhole solutions is investigated by taking linear, logarithmic and Chaplygin gas models as a constituent of exotic matter at thin-shell. The presence of wormhole stability regions particularly relies on the physically justifiable values of charge and quintessence parameter. It is noted that the increasing value of charge seems as an effective component for stable regions while the rise in negativity of the quintessence parameter gives more stable wormhole configurations.

2017 ◽  
Vol 26 (05) ◽  
pp. 1741007 ◽  
Author(s):  
Muhammad Sharif ◽  
Saadia Mumtaz

This work is devoted to investigate the stability of thin-shell wormholes in Einstein–Hoffmann–Born–Infeld electrodynamics. We also study the attractive and repulsive characteristics of these configurations. A general equation-of-state is considered in the form of linear perturbation which explores the stability of the respective wormhole solutions. We assume Chaplygin, linear and logarithmic gas models to study exotic matter at thin-shell and evaluate stability regions for different values of the involved parameters. It is concluded that the Hoffmann–Born–Infeld parameter and electric charge enhance the stability regions.


2008 ◽  
Vol 17 (08) ◽  
pp. 1179-1196 ◽  
Author(s):  
MARTÍN G. RICHARTE ◽  
CLAUDIO SIMEONE

We study spherically symmetric thin shell wormholes in a string cloud background in (3 + 1)-dimensional space–time. The amount of exotic matter required for the construction, the traversability and the stability of such wormholes under radial perturbations are analyzed as functions of the parameters of the model. In addition, in the appendices a nonperturbative approach to the dynamics and a possible extension of the analysis to a related model are briefly discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
M. Sharif ◽  
Saadia Mumtaz

This paper is devoted to construct Schwarzschild-de Sitter and anti-de Sitter thin-shell wormholes by employing Visser’s cut and paste technique. The Darmois-Israel formalism is adopted to formulate the surface stresses of the shell. We analyze null and weak energy conditions as well as attractive and repulsive characteristics of thin-shell wormholes. We also explore stable and unstable solutions against linear perturbations by taking two different Chaplygin gas models for exotic matter. It is concluded that the stress-energy tensor components violate the null and weak energy conditions indicating the existence of exotic matter at the wormhole throat. Finally, we find unstable and stable configurations for the constructed thin-shell wormholes.


2019 ◽  
Vol 34 (01) ◽  
pp. 1950006 ◽  
Author(s):  
Alina Khaybullina ◽  
Gulira Tuleganova

Mazharimousavi and Halilsoy [S. H. Mazharimousavi and M. Halilsoy, Mod. Phys. Lett. A 31, 1650192 (2016)] recently proposed wormhole solutions in f(R)-gravity that satisfy energy conditions but are unstable. We show here that stability could still be achieved for thin-shell wormholes obtained by gluing the wormholes in f(R)-gravity with the exterior Schwarzschild vacuum. Using the new geometrical constraints from thin-shell “mass” and from external “force” developed by Garcia, Lobo and Visser, we demarcate and analyze the stability regions.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050136
Author(s):  
Nilofar Rahman ◽  
Masum Murshid ◽  
Farook Rahaman ◽  
Mehedi Kalam

We construct a thin-shell wormhole using the cut and paste technique from regular charged black holes with a nonlinear electrodynamics source (proposed by Balart and Vagenas). Using Darmois–Israel formalism we determine the surface stresses, which are localized at the wormhole throat. We also determine the amount of exotic matter present in the shell. To analyze the stability of the constructed wormhole we consider an equation of state as a linear perturbation. The stability region is shown in the graph by varying the values of the parameter.


2009 ◽  
Vol 18 (13) ◽  
pp. 1977-1990 ◽  
Author(s):  
TANWI BANDYOPADHYAY ◽  
ANUSUA BAVEJA ◽  
SUBENOY CHAKRABORTY

In this work, the stability of static solutions of spherical thin shell wormholes is analyzed when a slight perturbation (which preserves the basic symmetry) is applied to them. The modified Chaplygin gas (with α = 1 in the equation of state) has been chosen as a candidate for exotic matter needed around the throat. Different cases for such thin shell wormhole construction have been studied, viz. wormholes constructed from Schwarzschild, Schwarzschild–de Sitter, Schwarzschild–anti-de Sitter and Reissner–Nordström metrics. Depending upon the values of the parameters and some restrictions obeyed by them, static stable solutions are seen to exist in some cases.


2016 ◽  
Vol 94 (2) ◽  
pp. 158-169 ◽  
Author(s):  
M. Sharif ◽  
Saadia Mumtaz

The objective of this paper is to investigate the stability of cylindrical thin-shell wormholes. We follow the Visser’s cut and paste approach for the construction of thin-shell. The Darmois–Israel formalism is used to determine the stress–energy tensor. The null and weak energy conditions as well as attractive and repulsive characteristics of thin-shell wormholes are analyzed. We find both stable and unstable solutions by taking dark energy, generalized cosmic Chaplygin gas, and modified cosmic Chaplygin gas models as exotic matter at the wormhole throat. Finally, we compare our results with those for modified generalized Chaplygin gas model.


2018 ◽  
Vol 33 (09) ◽  
pp. 1850049 ◽  
Author(s):  
Z. Amirabi ◽  
M. Halilsoy ◽  
S. Habib Mazharimousavi

At the Planck scale of length [Formula: see text] m where the energy is comparable with the Planck energy, the quantum gravity corrections to the classical background spacetime results in gravity’s rainbow or rainbow gravity. In this modified theory of gravity, geometry depends on the energy of the test particle used to probe the spacetime, such that in the low energy limit, it yields the standard general relativity. In this work, we study the thin-shell wormholes in the spherically symmetric rainbow gravity. We find the corresponding properties in terms of the rainbow functions which are essential in the rainbow gravity and the stability of such thin-shell wormholes are investigated. Particularly, it will be shown that there are exact solutions in which high energy particles crossing the throat will encounter less amount of total exotic matter. This may be used as an advantage over general relativity to reduce the amount of exotic matter.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ali Övgün ◽  
Kimet Jusufi

Considerable attention has been devoted to the wormhole physics in the past 30 years by exploring the possibilities of finding traversable wormholes without the need for exotic matter. In particular, the thin-shell wormhole formalism has been widely investigated by exploiting the cut-and-paste technique to merge two space-time regions and to research the stability of these wormholes developed by Visser. This method helps us to minimize the amount of the exotic matter. In this paper, we construct a four-dimensional, spherically symmetric, dyonic thin-shell wormhole with electric charge Q, magnetic charge P, and dilaton charge Σ, in the context of Einstein-Maxwell-dilaton theory. We have applied Darmois-Israel formalism and the cut-and-paste method by joining together two identical space-time solutions. We carry out the dyonic thin-shell wormhole stability analyses by using a linear barotropic gas, Chaplygin gas, and logarithmic gas for the exotic matter. It is shown that, by choosing suitable parameter values as well as equation of state parameter, under specific conditions, we obtain a stable dyonic thin-shell wormhole solution. Finally, we argue that the stability domain of the dyonic thin-shell wormhole can be increased in terms of electric charge, magnetic charge, and dilaton charge.


2015 ◽  
Vol 24 (05) ◽  
pp. 1550034 ◽  
Author(s):  
Piyali Bhar ◽  
Ayan Banerjee

In this paper, we construct thin-shell wormholes in (2 + 1)-dimensions from noncommutative BTZ black hole by applying the cut-and-paste procedure implemented by Visser. We calculate the surface stresses localized at the wormhole throat by using the Darmois–Israel formalism and we find that the wormholes are supported by matter violating the energy conditions. In order to explore the dynamical analysis of the wormhole throat, we consider that the matter at the shell is supported by dark energy equation of state (EoS) p = ωρ with ω < 0. The stability analysis is carried out of these wormholes to linearized spherically symmetric perturbations around static solutions. Preserving the symmetry we also consider the linearized radial perturbation around static solution to investigate the stability of wormholes which was explored by the parameter β (speed of sound).


Sign in / Sign up

Export Citation Format

Share Document