scholarly journals TRAVERSABLE WORMHOLES IN A STRING CLOUD

2008 ◽  
Vol 17 (08) ◽  
pp. 1179-1196 ◽  
Author(s):  
MARTÍN G. RICHARTE ◽  
CLAUDIO SIMEONE

We study spherically symmetric thin shell wormholes in a string cloud background in (3 + 1)-dimensional space–time. The amount of exotic matter required for the construction, the traversability and the stability of such wormholes under radial perturbations are analyzed as functions of the parameters of the model. In addition, in the appendices a nonperturbative approach to the dynamics and a possible extension of the analysis to a related model are briefly discussed.

2017 ◽  
Vol 26 (05) ◽  
pp. 1741007 ◽  
Author(s):  
Muhammad Sharif ◽  
Saadia Mumtaz

This work is devoted to investigate the stability of thin-shell wormholes in Einstein–Hoffmann–Born–Infeld electrodynamics. We also study the attractive and repulsive characteristics of these configurations. A general equation-of-state is considered in the form of linear perturbation which explores the stability of the respective wormhole solutions. We assume Chaplygin, linear and logarithmic gas models to study exotic matter at thin-shell and evaluate stability regions for different values of the involved parameters. It is concluded that the Hoffmann–Born–Infeld parameter and electric charge enhance the stability regions.


2021 ◽  
Vol 36 (26) ◽  
Author(s):  
Saadia Mumtaz

This work studies the theoretical construction of charged quintessence thin-shell wormholes using Israel thin-shell approach. The stability of these wormhole solutions is investigated by taking linear, logarithmic and Chaplygin gas models as a constituent of exotic matter at thin-shell. The presence of wormhole stability regions particularly relies on the physically justifiable values of charge and quintessence parameter. It is noted that the increasing value of charge seems as an effective component for stable regions while the rise in negativity of the quintessence parameter gives more stable wormhole configurations.


2006 ◽  
Vol 15 (09) ◽  
pp. 1359-1371 ◽  
Author(s):  
K. D. PATIL ◽  
S. S. ZADE

We generalize the earlier studies on the spherically symmetric gravitational collapse in four-dimensional space–time to higher dimensions. It is found that the central singularities may be naked in higher dimensions but depend sensitively on the choices of the parameters. These naked singularities are found to be gravitationally strong that violate the cosmic censorship hypothesis.


2018 ◽  
Vol 191 ◽  
pp. 07012
Author(s):  
Oleg Evseev ◽  
Oleg Melichev

We consider the most general theory of a single scalar field with the second order field equations, the Horndeski theory, in four-dimensional space-time. We show that static, spherically symmetric, asymptotically flat, Lorentzian wormholes are unstable in this theory.


2015 ◽  
Vol 12 (10) ◽  
pp. 1550106 ◽  
Author(s):  
Kazuharu Bamba ◽  
Davood Momeni ◽  
Ratbay Myrzakulov

We examine the Kaluza–Klein (KK) dimensional reduction from higher dimensional space-time and the properties of the resultant Bergmann–Wagoner general action of scalar–tensor theories. With the analysis of the perturbations, we also investigate the stability of the anti-de Sitter (AdS) space-time in the (D ∈ 𝒩)-dimensional Einstein gravity with the negative cosmological constant. Furthermore, we derive the conditions for the dimensional reduction to successfully be executed and present the KK compactification mechanism.


1992 ◽  
Vol 07 (08) ◽  
pp. 653-658 ◽  
Author(s):  
SUBENOY CHAKRABORTY

The wave function following the Hartle-Hawking (HH) no-boundary proposal is evaluated in five-dimensional space-time with topology of the four space S1×S3, generalizing the concept of microsuperspace. The functional integral in the expression for the wave function is simplified to an ordinary integration of one variable and is evaluated by the method of steepest-descent.


2018 ◽  
Vol 33 (09) ◽  
pp. 1850049 ◽  
Author(s):  
Z. Amirabi ◽  
M. Halilsoy ◽  
S. Habib Mazharimousavi

At the Planck scale of length [Formula: see text] m where the energy is comparable with the Planck energy, the quantum gravity corrections to the classical background spacetime results in gravity’s rainbow or rainbow gravity. In this modified theory of gravity, geometry depends on the energy of the test particle used to probe the spacetime, such that in the low energy limit, it yields the standard general relativity. In this work, we study the thin-shell wormholes in the spherically symmetric rainbow gravity. We find the corresponding properties in terms of the rainbow functions which are essential in the rainbow gravity and the stability of such thin-shell wormholes are investigated. Particularly, it will be shown that there are exact solutions in which high energy particles crossing the throat will encounter less amount of total exotic matter. This may be used as an advantage over general relativity to reduce the amount of exotic matter.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Ali Övgün ◽  
Kimet Jusufi

Considerable attention has been devoted to the wormhole physics in the past 30 years by exploring the possibilities of finding traversable wormholes without the need for exotic matter. In particular, the thin-shell wormhole formalism has been widely investigated by exploiting the cut-and-paste technique to merge two space-time regions and to research the stability of these wormholes developed by Visser. This method helps us to minimize the amount of the exotic matter. In this paper, we construct a four-dimensional, spherically symmetric, dyonic thin-shell wormhole with electric charge Q, magnetic charge P, and dilaton charge Σ, in the context of Einstein-Maxwell-dilaton theory. We have applied Darmois-Israel formalism and the cut-and-paste method by joining together two identical space-time solutions. We carry out the dyonic thin-shell wormhole stability analyses by using a linear barotropic gas, Chaplygin gas, and logarithmic gas for the exotic matter. It is shown that, by choosing suitable parameter values as well as equation of state parameter, under specific conditions, we obtain a stable dyonic thin-shell wormhole solution. Finally, we argue that the stability domain of the dyonic thin-shell wormhole can be increased in terms of electric charge, magnetic charge, and dilaton charge.


2006 ◽  
Vol 2 (S238) ◽  
pp. 343-344
Author(s):  
Carlos H. Coimbra-Araújo ◽  
Patricio S. Letelier

AbstractWe construct an exact and simple general relativistic model to describe a galactic disc based on a Schwarzschild disc immersed in a six dimensional space-time. The stability of this configuration is studied and we present results for the calculation of circular geodesic orbits.


Sign in / Sign up

Export Citation Format

Share Document