CONSTRUCTION OF FOUR DIMENSIONAL FERMIONIC STRING MODELS WITH A GENERALIZED SUPERCURRENT

1988 ◽  
Vol 03 (01) ◽  
pp. 279-284 ◽  
Author(s):  
HIKARU KAWAI ◽  
DAVID C. LEWELLEN ◽  
S.-H. HENRY TYE

The spin structure construction of four-dimensional fermionic string models of the heterotic type is extended by considering a generalized form of the world-sheet super-current. The rules for model building are given and illustrated with two sets of examples: the original spin structure construction and the Z3 asymmetric orbifold.

1989 ◽  
Vol 04 (24) ◽  
pp. 2339-2347 ◽  
Author(s):  
DAVID C. DUNBAR

It is shown that ZN orbifold models may, in special case be realised by a set world sheet fermions which have boundary conditions which are non-diagonal.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Jin Chen ◽  
Chao-Hsiang Sheu ◽  
Mikhail Shifman ◽  
Gianni Tallarita ◽  
Alexei Yung

Abstract We study two-dimensional weighted $$ \mathcal{N} $$ N = (2) supersymmetric ℂℙ models with the goal of exploring their infrared (IR) limit. 𝕎ℂℙ(N,$$ \tilde{N} $$ N ˜ ) are simplified versions of world-sheet theories on non-Abelian strings in four-dimensional $$ \mathcal{N} $$ N = 2 QCD. In the gauged linear sigma model (GLSM) formulation, 𝕎ℂℙ(N,$$ \tilde{N} $$ N ˜ ) has N charges +1 and $$ \tilde{N} $$ N ˜ charges −1 fields. As well-known, at $$ \tilde{N} $$ N ˜ = N this GLSM is conformal. Its target space is believed to be a non-compact Calabi-Yau manifold. We mostly focus on the N = 2 case, then the Calabi-Yau space is a conifold. On the other hand, in the non-linear sigma model (NLSM) formulation the model has ultra-violet logarithms and does not look conformal. Moreover, its metric is not Ricci-flat. We address this puzzle by studying the renormalization group (RG) flow of the model. We show that the metric of NLSM becomes Ricci-flat in the IR. Moreover, it tends to the known metric of the resolved conifold. We also study a close relative of the 𝕎ℂℙ model — the so called zn model — which in actuality represents the world sheet theory on a non-Abelian semilocal string and show that this zn model has similar RG properties.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Hanno Bertle ◽  
Andrea Dei ◽  
Matthias R. Gaberdiel

Abstract The large N limit of symmetric orbifold theories was recently argued to have an AdS/CFT dual world-sheet description in terms of an sl(2, ℝ) WZW model. In previous work the world-sheet state corresponding to the symmetric orbifold stress-energy tensor was identified. We calculate certain 2- and 3-point functions of the corresponding vertex operator on the world-sheet, and demonstrate that these amplitudes reproduce exactly what one expects from the dual symmetric orbifold perspective.


2020 ◽  
Vol 91 (8) ◽  
pp. e2.3-e2
Author(s):  
Paul Fletcher

Paul Fletcher is Wellcome Investigator and Bernard Wolfe Professor of Health Neuroscience at the University of Cambridge. He is also Director of Studies for Preclinical Medicine at Clare College and Honorary Consultant Psychiatrist with the Cambridgeshire and Peterborough NHS Foundation Trust. He studied Medicine, before carrying out specialist training in Psychiatry and taking a PhD in cognitive neuroscience. He researches human perception, learning and decision-making in health and mental illness.We do not have direct contact with external reality. We must rely on messages from the sense organs, conveying information about the state of the world and our bodies. These messages are not easy to decipher, being noisy and ambiguous, but from them we have to construct models of the world. I will discuss this challenge and how we are very adept at creating a model of reality based on achieving a balance between what our senses are telling us and our expectations of what should be the case. This is often referred to as the predictive processing framework.Relying on this balance comes at a cost, rendering us vulnerable to illusions and biases and, in more extreme cases, to creating a reality that diverges from that experienced by others. This can arise for a variety of reasons but, at the root, I suggest, lies the nature of the brain as a model-building organ. Though this divergence from reality – psychosis – often seems inexplicable and incomprehensible, I suggest that a few core principles can help us to understand it and offers ways of thinking about how phenomena like hallucinations can be understood. Interestingly, the framework suggests ways in which apparently similar phenomena like hallucinations can arise from distinct alterations to the function of a predictive processing system.


1999 ◽  
Vol 14 (28) ◽  
pp. 4501-4517 ◽  
Author(s):  
FEDELE LIZZI

We describe how the presence of the antisymmetric tensor (torsion) on the world sheet action of string theory renders the size of the target space a gauge noninvariant quantity. This generalizes the R ↔ 1/R symmetry in which momenta and windings are exchanged, to the whole O(d,d,ℤ). The crucial point is that, with a transformation, it is possible always to have all of the lowest eigenvalues of the Hamiltonian to be momentum modes. We interpret this in the framework of noncommutative geometry, in which algebras take the place of point spaces, and of the spectral action principle for which the eigenvalues of the Dirac operator are the fundamental objects, out of which the theory is constructed. A quantum observer, in the presence of many low energy eigenvalues of the Dirac operator (and hence of the Hamiltonian) will always interpreted the target space of the string theory as effectively uncompactified.


1990 ◽  
Vol 7 (8) ◽  
pp. 381-384
Author(s):  
Yan Jun ◽  
Li Jiangnan ◽  
Hu Shike
Keyword(s):  

2020 ◽  
Vol 2 (1) ◽  
pp. 533-558
Author(s):  
Tomer D. Ullman ◽  
Joshua B. Tenenbaum

A Bayesian framework helps address, in computational terms, what knowledge children start with and how they construct and adapt models of the world during childhood. Within this framework, inference over hierarchies of probabilistic generative programs in particular offers a normative and descriptive account of children's model building. We consider two classic settings in which cognitive development has been framed as model building: ( a) core knowledge in infancy and ( b) the child as scientist. We interpret learning in both of these settings as resource-constrained, hierarchical Bayesian program induction with different primitives and constraints. We examine what mechanisms children could use to meet the algorithmic challenges of navigating large spaces of potential models, in particular the proposal of the child as hacker and how it might be realized by drawing on recent computational advances. We also discuss prospects for a unifying account of model building across scientific theories and intuitive theories, and in biological and cultural evolution more generally.


2016 ◽  
Vol 31 (28n29) ◽  
pp. 1645040
Author(s):  
Arkady Vainshtein

We study two-dimensional sigma models where the chiral deformation diminished the original [Formula: see text] supersymmetry to the chiral one, [Formula: see text]. Such heterotic models were discovered previously on the world sheet of non-Abelian stringy solitons supported by certain four-dimensional [Formula: see text] theories. We study geometric aspects and holomorphic properties of these models, and derive a number of exact expressions for the [Formula: see text] functions in terms of the anomalous dimensions analogous to the NSVZ [Formula: see text] function in four-dimensional Yang-Mills. Instanton calculus provides a straightforward method for the derivation.


Sign in / Sign up

Export Citation Format

Share Document