IS THERE A STATISTICS TRANSMUTATION DUE TO INTERACTION WITH THE CHERN-SIMONS FIELD?

1991 ◽  
Vol 06 (08) ◽  
pp. 1313-1318 ◽  
Author(s):  
G.G. NANOBASHVILI ◽  
G.P. PRON’KO

The classical mechanics of a scalar particle interacting with a Chern-Simons field in the (2+1)-dimensional space-time has been considered. The geometric quantization of this system does not lead to particle statistics transmutation. This result is in apparent contradiction with the statement of Ref. 1.

2017 ◽  
Vol 45 ◽  
pp. 1760005 ◽  
Author(s):  
Ivan Morales ◽  
Bruno Neves ◽  
Zui Oporto ◽  
Olivier Piguet

We propose a gravitation theory in 4 dimensional space-time obtained by compacting to 4 dimensions the five dimensional topological Chern-Simons theory with the gauge group SO(1,5) or SO(2,4) – the de Sitter or anti-de Sitter group of 5-dimensional space-time. In the resulting theory, torsion, which is solution of the field equations as in any gravitation theory in the first order formalism, is not necessarily zero. However, a cosmological solution with zero torsion exists, which reproduces the Lambda-CDM cosmological solution of General Relativity. A realistic solution with spherical symmetry is also obtained.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
J. A. Helayël-Neto ◽  
Alireza Sepehri ◽  
Tooraj Ghaffary

It is our aim to show that the Chern-Simons terms of modified gravity can be understood as generated by the addition of a 3-dimensional algebraic manifold to an initial 11-dimensional space-time manifold; this builds up an 11+3-dimensional space-time. In this system, firstly, some fields living in the bulk join the fields that live on the 11-dimensional manifold, so that the rank of the gauge fields exceeds the dimension of the algebra; consequently, there emerges an anomaly. To solve this problem, another 11-dimensional manifold is included in the 11+3-dimensional space-time, and it interacts with the initial manifold by exchanging Chern-Simon fields. This mechanism is able to remove the anomaly. Chern-Simons terms actually produce an extra manifold in the pair of 11-dimensional manifolds of the 11+3-space-time. Summing up the topology of both the 11-dimensional manifolds and the topology of the exchanged Chern-Simons manifold in the bulk, we conclude that the total topology shrinks to one, which is in agreement with the main idea of the Big Bang theory.


1992 ◽  
Vol 07 (03) ◽  
pp. 619-630 ◽  
Author(s):  
E. ABDALLA ◽  
F. M. DE CARVALHO

We analyze the phase structure of the CPn−1 model in three-dimensional space–time coupled to fermions, paying special attention to the role played by the Chern–Simons term generated by the fermions. A rich phase structure arises from the large-n expansion.


1999 ◽  
Vol 14 (02) ◽  
pp. 271-280
Author(s):  
E. R. BEZERRA DE MELLO ◽  
V. M. MOSTEPANENKO

In this paper we develop diagrammatic computations of spontaneous parity-violating anomalies for a complex massive vector field (Proca field) induced by its interaction with an electromagnetic field in a three-dimensional space–time. We also calculate the effective potential energy between two charged particles in Maxwell–Chern–Simons theory in a nonrelativistic limit.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


2019 ◽  
Vol 34 (08) ◽  
pp. 1950035
Author(s):  
Chun Yong Chew ◽  
Yong Kheng Goh

We study the electromagnetic Casimir interaction energy between two parallel concentric cylinders in [Formula: see text]-dimensional Minkowski space–time for different combinations of perfectly conducting boundary condition and infinitely permeable boundary condition. We consider two cases where one cylinder is outside each other and where one is inside the other. By solving the equation of motion and computing the TGTG formulas, explicit formulas for the Casimir interaction energy can be derived and asymptotic behavior of the Casimir interaction energy in the nanoregime is calculated by using perturbation technique. We computed the interaction energy analytically up to next-to-leading order term.


Sign in / Sign up

Export Citation Format

Share Document