SUPERCONFORMAL GEOMETRY FROM THE GRASSMANN AND HARMONIC ANALYTICITIES II: THE N=4 SU(2) CONFORMAL CASE

1991 ◽  
Vol 06 (18) ◽  
pp. 3175-3200 ◽  
Author(s):  
E.H. SAIDI ◽  
M. ZAKKARI

N=4 SU(2) conformal invariance is studied in the harmonic superspace. It is shown that the N=4 SU(2) conformal structure is equivalent to the harmonic analyticity. The solutions to the superconformal constraints are worked out in detail and the conformal properties of all objects of interest are given. A realization of the N=4 current in terms of the free (F.S.) hypermultiplet is obtained.

2020 ◽  
Vol 50 (11) ◽  
pp. 1418-1425
Author(s):  
Neil Dewar ◽  
James Read

AbstractIt is well-known that the conformal structure of a relativistic spacetime is of profound physical and conceptual interest. In this note, we consider the analogous structure for Newtonian theories. We show that the Newtonian Weyl tensor is an invariant of this structure.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 170
Author(s):  
Michele Caselle

In this review, after a general introduction to the effective string theory (EST) description of confinement in pure gauge theories, we discuss the behaviour of EST as the temperature is increased. We show that, as the deconfinement point is approached from below, several universal features of confining gauge theories, like the ratio Tc/σ0, the linear increase of the squared width of the flux tube with the interquark distance, or the temperature dependence of the interquark potential, can be accurately predicted by the effective string. Moreover, in the vicinity of the deconfinement point the EST behaviour turns out to be in good agreement with what was predicted by conformal invariance or by dimensional reduction, thus further supporting the validity of an EST approach to confinement.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
I. L. Buchbinder ◽  
E. A. Ivanov ◽  
V. A. Ivanovskiy

Abstract We develop a novel bi-harmonic $$ \mathcal{N} $$ N = 4 superspace formulation of the $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory (SYM) in four dimensions. In this approach, the $$ \mathcal{N} $$ N = 4 SYM superfield constraints are solved in terms of on-shell $$ \mathcal{N} $$ N = 2 harmonic superfields. Such an approach provides a convenient tool of constructing the manifestly $$ \mathcal{N} $$ N = 4 supersymmetric invariants and further rewriting them in $$ \mathcal{N} $$ N = 2 harmonic superspace. In particular, we present $$ \mathcal{N} $$ N = 4 superfield form of the leading term in the $$ \mathcal{N} $$ N = 4 SYM effective action which was known previously in $$ \mathcal{N} $$ N = 2 superspace formulation.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
I. L. Buchbinder ◽  
E. A. Ivanov ◽  
B. S. Merzlikin ◽  
K. V. Stepanyantz

Abstract We apply the harmonic superspace approach for calculating the divergent part of the one-loop effective action of renormalizable 6D, $$ \mathcal{N} $$ N = (1, 0) supersymmetric higher-derivative gauge theory with a dimensionless coupling constant. Our consideration uses the background superfield method allowing to carry out the analysis of the effective action in a manifestly gauge covariant and $$ \mathcal{N} $$ N = (1, 0) supersymmetric way. We exploit the regularization by dimensional reduction, in which the divergences are absorbed into a renormalization of the coupling constant. Having the expression for the one-loop divergences, we calculate the relevant β-function. Its sign is specified by the overall sign of the classical action which in higher-derivative theories is not fixed a priori. The result agrees with the earlier calculations in the component approach. The superfield calculation is simpler and provides possibilities for various generalizations.


1991 ◽  
Vol 18 (2) ◽  
pp. 10-15
Author(s):  
O. Babelon ◽  
L. Bonora
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document