scholarly journals THE THEORY OF SCALE RELATIVITY

1992 ◽  
Vol 07 (20) ◽  
pp. 4899-4936 ◽  
Author(s):  
LAURENT NOTTALE

Basing our discussion on the relative character of all scales in nature and on the explicit dependence of physical laws on scale in quantum physics, we apply the principle of relativity to scale transformations. This principle, in combination with its breaking above the Einstein-de Broglie wavelength and time, leads to the demonstration of the existence of a universal, absolute and impassable scale in nature, which is invariant under dilatation. This lower limit to all lengths is identified with the Planck scale, which now plays for scale the same role as is played by light velocity for motion. We get new scale transformations of a Lorentzian form and generalize the de Broglie and Heisenberg relations. As a consequence the high energy length and mass scales now decouple, energy and momentum tending to infinity when resolution tends to the Planck scale, which thus plays the role of the previous zero point. This theory solves the problem of divergence of charge and mass (self-energy) in electrodynamics, implies that the four fundamental couplings (including gravitation) converge at the Planck energy, improves the agreement of GUT predictions with experimental results, and allows one to get precise estimates of the values of the fundamental coupling constants.

Author(s):  
Satya Seshavatharam U.V ◽  
Lakshminarayana S

Unification point of view, quantum cosmology must be given a priority and one should make a note that, Spin is a basic property of quantum physics and rotation is a very common experience. In this context, we have developed a quantum model of cosmology associated with Machian universe having Planck scale origin, total dark matter, light speed rotation and equality of gravitational self energy density and thermal energy density. We would like to appeal that, observed cosmic radius and age seem to be shortened by 146.3 times their actual magnitudes.


2021 ◽  
Vol 9 (1) ◽  
pp. 18
Author(s):  
U. V.S. Seshavatharam ◽  
S. Lakshminarayana

We would like to emphasize that, extraordinary physical concepts like Big bang, Inflation, Dark energy and Superluminal expansion demand super-normal efforts and need observational support. Observational data is raising day-by-day non-conformity and demanding changes in the original concepts. It is very interesting to note that James Peebles, the famous cosmologist and 2019 Nobel laureate strongly believes that Big bang concept is inappropriate in understanding the universe. It is better to understand and develop models of cosmology based on well supported physical concepts rather than extraordinary physical hypothesis. Unification point of view, quantum cosmology must be given a priority and one should make a note that, Spin is a basic property of quantum physics and rotation is a very common experience. In this context, with reference to life cycle of living creatures and independent of red-shift data, we have developed a quantum model of cosmology associated with Machian universe having Planck scale origin, total dark matter, light speed expansion, light speed rotation, equality of gravitational self energy density and thermal energy density, radially decreasing internal acceleration and radially increasing anisotropy. We are working on understanding and correlating observed redshift data in a unified approach. In this letter, we present various galactic applications of current cosmic angular velocity.  


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
R. N. Lee ◽  
A. I. Onishchenko

Abstract We calculate the master integrals for bipartite cuts of the three-loop propagator QED diagrams. These master integrals determine the spectral density of the photon self energy. Our results are expressed in terms of the iterated integrals, which, apart from the 4m cut (the cut of 4 massive lines), reduce to Goncharov’s polylogarithms. The master integrals for 4m cut have been calculated in our previous paper in terms of the one-fold integrals of harmonic polylogarithms and complete elliptic integrals. We provide the threshold and high-energy asymptotics of the master integrals found, including those for 4m cut.


2020 ◽  
Vol 29 (1) ◽  
pp. 40-46
Author(s):  
Dmitri L. Khokhlov

AbstractThe studied conjecture is that ultra high energy cosmic rays (UHECRs) are hypothetical Planck neutrinos arising in the decay of the protons falling onto the gravastar. The proton is assumed to decay at the Planck scale into positron and four Planck neutrinos. The supermassive black holes inside active galactic nuclei, while interpreted as gravastars, are considered as UHECR sources. The scattering of the Planck neutrinos by the proton at the Planck scale is considered. The Planck neutrinos contribution to the CR events may explain the CR spectrum from 5 × 1018 eV to 1020 eV. The muon number in the Planck neutrinos-initiated shower is estimated to be larger by a factor of 3/2 in comparison with the standard model that is consistent with the observational data.


2015 ◽  
Vol 91 (4) ◽  
Author(s):  
Floyd W. Stecker ◽  
Sean T. Scully ◽  
Stefano Liberati ◽  
David Mattingly

2013 ◽  
Vol 28 (14) ◽  
pp. 1350053 ◽  
Author(s):  
BRUCE L. SÁNCHEZ-VEGA ◽  
ILYA L. SHAPIRO

We start systematic investigation for the possibility to have supersymmetry (SUSY) as an asymptotic state of the gauge theory in the high energy (UV) limit, due to the renormalization group running of coupling constants of the theory. The answer on whether this situation takes place or not, can be resolved by dealing with the running of the ratios between Yukawa and scalar couplings to the gauge coupling. The behavior of these ratios does not depend too much on whether gauge coupling is asymptotically free (AF) or not. It can be shown that the UV stable fixed point for the Yukawa coupling is not supersymmetric. Taking this into account, one can break down SUSY only in the scalar coupling sector. We consider two simplest examples of such breaking, namely N = 1 supersymmetric QED and QCD. In one of the cases one can construct an example of SUSY being restored in the UV regime.


1966 ◽  
Vol 44 (2) ◽  
pp. 313-335 ◽  
Author(s):  
J. Van Kranendonk ◽  
V. F. Sears

The effects of the interaction between the rotational motion of the molecules in solid hydrogen and the lattice vibrations, resulting from the anisotropic van der Waals forces, have been investigated theoretically. For the radial part of the anisotropic intermolecular potential an exp–6 model has been adopted. First, the effect of the lattice vibrations, and of the anistropic blowing up of the crystal by the zero-point lattice vibrations, is discussed. The effective anisotropic interaction resulting from averaging the instantaneous interaction over the lattice vibrations is calculated by assuming a Gaussian distribution for the modulation of the relative intermolecular separations by the lattice vibrations. Secondly, the displacement of the rotational levels due to the self-energy of the molecules in the lattice is calculated both classically and quantum mechanically, and the resulting shifts in the frequencies of the rotational transitions in solid hydrogen are given. Finally, the splitting of the rotational levels due to the anisotropy of the self-energy effect is calculated. The theory is applied to the calculation of the asymmetry of the S0(0) triplet in the rotational Raman spectrum of solid parahydrogen, and of the specific heat anomaly in solid hydrogen at low ortho-concentrations.


Author(s):  
Ivan A. Shershan ◽  
Tatiana V. Shishkina

In this paper the analysis of W-boson production process in high-energy electron-photon collisions as a tool to search for deviations from the Standard Model is considered. In particular, a set of extended gauge models, including anomalous multi-boson interactions, are discussed as a promising way for «new physics» study. A numerical analysis of the total cross sections of the processes was carried out. The lowest order radiative corrections in the soft-photon approximation within the Standard Model are taken into account. Calculations beyond the Standard Model was performed, the kinematic features of the cross sections were identified. The restrictions on the anomalous triple gauge boson coupling constants were analyzed and the kinematic areas to the search for their manifestations were obtained during the experiments at the International Linear Collider. The paper shows that the search for «new physics» effects based on electron-photon collisions around the W-boson production peak is the maximal promising. It was also shown that future experiments at high luminosity linear colliders will significantly clarify the constraints on anomalous gauge coupling constants.


2000 ◽  
Vol 341-348 ◽  
pp. 2091-2094 ◽  
Author(s):  
T. Sato ◽  
Y. Naitoh ◽  
T. Kamiyama ◽  
T. Takahashi ◽  
T. Yokoya ◽  
...  

1992 ◽  
Vol 47 (1-2) ◽  
pp. 367-370 ◽  
Author(s):  
A. C. Legon ◽  
P. W. Fowler

AbstractThe 14N-nuclear quadrupole coupling constants χaa(14N<2>) and χaa(14N(1)) for the ground-states of the dimers 14N(2)14N(1) • • • HCCH and 14N(2)14N(1) • • • HC15N have been corrected for zero-point effects and for the electrical effects of the subunit HX to give two estimatesχ(14N) = -5.01 (13) and - 5.07 (8) MHz, respectively, for the coupling constant of the isolated 14N2 molecule


Sign in / Sign up

Export Citation Format

Share Document