CHARACTER TABLE OF HECKE ALGEBRA OF TYPE AN-1 AND REPRESENTATIONS OF THE QUANTUM GROUP Uq(gln+1)

1992 ◽  
Vol 07 (supp01b) ◽  
pp. 977-984 ◽  
Author(s):  
Kimio UENO ◽  
Youichi SHIBUKAWA

A q-analogue of the Frobenius formula is proved by means of the quantum groups Uq(gln+1), Aq(GLn+1) and Iwahori's Hecke algebra of type AN-1, and then, the character table of this Hecke algebra is investigated.

Author(s):  
Francesco Sala ◽  
Olivier Schiffmann

Abstract In [12] we have defined quantum groups $\mathbf{U}_{\upsilon }(\mathfrak{sl}(\mathbb{R}))$ and $\mathbf{U}_{\upsilon }(\mathfrak{sl}(S^1))$, which can be interpreted as continuum generalizations of the quantum groups of the Kac–Moody Lie algebras of finite, respectively affine type $A$. In the present paper, we define the Fock space representation $\mathcal{F}_{\mathbb{R}}$ of the quantum group $\mathbf{U}_{\upsilon }(\mathfrak{sl}(\mathbb{R}))$ as the vector space generated by real pyramids (a continuum generalization of the notion of partition). In addition, by using a variant version of the “folding procedure” of Hayashi–Misra–Miwa, we define an action of $\mathbf{U}_{\upsilon }(\mathfrak{sl}(S^1))$ on $\mathcal{F}_{\mathbb{R}}$.


2009 ◽  
Vol 195 ◽  
pp. 125-152 ◽  
Author(s):  
Tom Halverson ◽  
Manuela Mazzocco ◽  
Arun Ram

AbstractWe define analogs of the Jucys-Murphy elements for the affine Temperley-Lieb algebra and give their explicit expansion in terms of the basis of planar Brauer diagrams. These Jucys-Murphy elements are a family of commuting elements in the affine Temperley-Lieb algebra, and we compute their eigenvalues on the generic irreducible representations. We show that they come from Jucys-Murphy elements in the affine Hecke algebra of type A, which in turn come from the Casimir element of the quantum group . We also give the explicit specializations of these results to the finite Temperley-Lieb algebra.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 779
Author(s):  
Charles F. Dunkl

In a preceding paper the theory of nonsymmetric Macdonald polynomials taking values in modules of the Hecke algebra of type A (Dunkl and Luque SLC 2012) was applied to such modules consisting of polynomials in anti-commuting variables, to define nonsymmetric Macdonald superpolynomials. These polynomials depend on two parameters q,t and are defined by means of a Yang–Baxter graph. The present paper determines the values of a subclass of the polynomials at the special points 1,t,t2,… or 1,t−1,t−2,…. The arguments use induction on the degree and computations with products of generators of the Hecke algebra. The resulting formulas involve q,t-hook products. Evaluations are also found for Macdonald superpolynomials having restricted symmetry and antisymmetry properties.


Author(s):  
Martijn Caspers

Abstract One of the main aims of this paper is to give a large class of strongly solid compact quantum groups. We do this by using quantum Markov semigroups and noncommutative Riesz transforms. We introduce a property for quantum Markov semigroups of central multipliers on a compact quantum group which we shall call ‘approximate linearity with almost commuting intertwiners’. We show that this property is stable under free products, monoidal equivalence, free wreath products and dual quantum subgroups. Examples include in particular all the (higher-dimensional) free orthogonal easy quantum groups. We then show that a compact quantum group with a quantum Markov semigroup that is approximately linear with almost commuting intertwiners satisfies the immediately gradient- ${\mathcal {S}}_2$ condition from [10] and derive strong solidity results (following [10]). Using the noncommutative Riesz transform we also show that these quantum groups have the Akemann–Ostrand property; in particular, the same strong solidity results follow again (now following [27]).


2013 ◽  
Vol 65 (5) ◽  
pp. 1073-1094 ◽  
Author(s):  
Mehrdad Kalantar ◽  
Matthias Neufang

AbstractIn this paper we use the recent developments in the representation theory of locally compact quantum groups, to assign to each locally compact quantum group 𝔾 a locally compact group 𝔾˜ that is the quantum version of point-masses and is an invariant for the latter. We show that “quantum point-masses” can be identified with several other locally compact groups that can be naturally assigned to the quantum group 𝔾. This assignment preserves compactness as well as discreteness (hence also finiteness), and for large classes of quantum groups, amenability. We calculate this invariant for some of the most well-known examples of non-classical quantum groups. Also, we show that several structural properties of 𝔾 are encoded by 𝔾˜; the latter, despite being a simpler object, can carry very important information about 𝔾.


2014 ◽  
Vol 57 (4) ◽  
pp. 708-720 ◽  
Author(s):  
Michael Brannan

AbstractIt is known that the normalized standard generators of the free orthogonal quantum groupO+Nconverge in distribution to a free semicircular system as N → ∞. In this note, we substantially improve this convergence result by proving that, in addition to distributional convergence, the operator normof any non-commutative polynomial in the normalized standard generators ofO+Nconverges asN→ ∞ to the operator norm of the corresponding non-commutative polynomial in a standard free semicircular system. Analogous strong convergence results are obtained for the generators of free unitary quantum groups. As applications of these results, we obtain a matrix-coefficient version of our strong convergence theorem, and we recover a well-knownL2-L∞norm equivalence for noncommutative polynomials in free semicircular systems.


1991 ◽  
Vol 06 (13) ◽  
pp. 1177-1183 ◽  
Author(s):  
TETSUO DEGUCHI ◽  
AKIRA FUJII

We present the quantum formal group derived from the hybrid-type model. The quantum group structure is given by the direct sum of several quantum groups. We show that by applying the quantum inverse scattering method to the direct sum of the several quantum groups we can reconstruct the hybrid-type model.


2016 ◽  
Vol 449 ◽  
pp. 321-345 ◽  
Author(s):  
Xin Fang ◽  
Ghislain Fourier ◽  
Markus Reineke
Keyword(s):  

2005 ◽  
Vol 4 (1) ◽  
pp. 135-173 ◽  
Author(s):  
Saad Baaj ◽  
Stefaan Vaes

For a matched pair of locally compact quantum groups, we construct the double crossed product as a locally compact quantum group. This construction generalizes Drinfeld’s quantum double construction. We study the modular theory and the $\mathrm{C}^*$-algebraic properties of these double crossed products, as well as several links between double crossed products and bicrossed products. In an appendix, we study the Radon–Nikodym derivative of a weight under a quantum group action (following Yamanouchi) and obtain, as a corollary, a new characterization of closed quantum subgroups. AMS 2000 Mathematics subject classification: Primary 46L89. Secondary 46L65


Sign in / Sign up

Export Citation Format

Share Document