scholarly journals More on Softly Broken N = 2 QCD

1997 ◽  
Vol 12 (05) ◽  
pp. 975-1002 ◽  
Author(s):  
Luis Álvarez-Gaumé ◽  
Marcos Mariño

We extend previous work on the soft breaking of N = 2 supersymmetric QCD. We present the formalism for the breaking due to a dilaton spurion for a general gauge group and obtain the exact effective potential. We obtain some general features of the vacuum structure in the pure SU (N) Yang–Mills theory and we also derive a general mass formula for this class of theories, in particular we present explicit results for the mass spectrum in the SU(2) case. Finally we analyze the vacuum structure of the SU(2) theory with one massless hypermultiplet. This theory presents dyon condensation and a first order phase transition in the supersymmetry breaking parameter driven by nonmutually local BPS states. This could be a hint of Argyres–Douglas-like phases in nonsupersymmetric gauge theories.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
A. Gorsky ◽  
D. Pavshinkin ◽  
A. Tyutyakina

Abstract We consider the $$ T\overline{T} $$ T T ¯ deformation of 2d large N YM theory on a cylinder, sphere and disk. The collective field theory Hamiltonian for the deformed theory is derived and the particular solutions to the equations of motion of the collective theory are found for the sphere. The account of the non-perturbative branch of the solution amounts to the first-order phase transition at the (A, τ) plane. We analyze the third-order phase transition in the deformed theory on the disk and derive the critical area as a function of the boundary holonomy. A kind of Hagedorn behavior in the spectral density is discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Ali Övgün

We study the P-v criticality of a specific charged AdS type black hole (SBH) in f(R) gravity coupled with Yang-Mills field. In the extended phase space, we treat the cosmological constant as a thermodynamic pressure. After we study the various thermodynamical quantities, we show that the thermodynamic properties of the SBH behave as a Van der Waals liquid-gas system at the critical points and there is a first-order phase transition between small-large SBH.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
James Halverson ◽  
Cody Long ◽  
Anindita Maiti ◽  
Brent Nelson ◽  
Gustavo Salinas

Abstract Dark Yang-Mills sectors, which are ubiquitous in the string landscape, may be reheated above their critical temperature and subsequently go through a confining first-order phase transition that produces stochastic gravitational waves in the early universe. Taking into account constraints from lattice and from Yang-Mills (center and Weyl) symmetries, we use a phenomenological model to construct an effective potential of the semi quark-gluon plasma phase, from which we compute the gravitational wave signal produced during confinement for numerous gauge groups. The signal is maximized when the dark sector dominates the energy density of the universe at the time of the phase transition. In that case, we find that it is within reach of the next-to-next generation of experiments (BBO, DECIGO) for a range of dark confinement scales near the weak scale.


Author(s):  
Richard J. Spontak ◽  
Steven D. Smith ◽  
Arman Ashraf

Block copolymers are composed of sequences of dissimilar chemical moieties covalently bonded together. If the block lengths of each component are sufficiently long and the blocks are thermodynamically incompatible, these materials are capable of undergoing microphase separation, a weak first-order phase transition which results in the formation of an ordered microstructural network. Most efforts designed to elucidate the phase and configurational behavior in these copolymers have focused on the simple AB and ABA designs. Few studies have thus far targeted the perfectly-alternating multiblock (AB)n architecture. In this work, two series of neat (AB)n copolymers have been synthesized from styrene and isoprene monomers at a composition of 50 wt% polystyrene (PS). In Set I, the total molecular weight is held constant while the number of AB block pairs (n) is increased from one to four (which results in shorter blocks). Set II consists of materials in which the block lengths are held constant and n is varied again from one to four (which results in longer chains). Transmission electron microscopy (TEM) has been employed here to investigate the morphologies and phase behavior of these materials and their blends.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Danny Marfatia ◽  
Po-Yan Tseng

Abstract We study the stochastic background of gravitational waves which accompany the sudden freeze-out of dark matter triggered by a cosmological first order phase transition that endows dark matter with mass. We consider models that produce the measured dark matter relic abundance via (1) bubble filtering, and (2) inflation and reheating, and show that gravitational waves from these mechanisms are detectable at future interferometers.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Aleksandr Azatov ◽  
Miguel Vanvlasselaer ◽  
Wen Yin

Abstract In this paper we present a novel mechanism for producing the observed Dark Matter (DM) relic abundance during the First Order Phase Transition (FOPT) in the early universe. We show that the bubble expansion with ultra-relativistic velocities can lead to the abundance of DM particles with masses much larger than the scale of the transition. We study this non-thermal production mechanism in the context of a generic phase transition and the electroweak phase transition. The application of the mechanism to the Higgs portal DM as well as the signal in the Stochastic Gravitational Background are discussed.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Clifford V. Johnson ◽  
Felipe Rosso

Abstract Recent work has shown that certain deformations of the scalar potential in Jackiw-Teitelboim gravity can be written as double-scaled matrix models. However, some of the deformations exhibit an apparent breakdown of unitarity in the form of a negative spectral density at disc order. We show here that the source of the problem is the presence of a multi-valued solution of the leading order matrix model string equation. While for a class of deformations we fix the problem by identifying a first order phase transition, for others we show that the theory is both perturbatively and non-perturbatively inconsistent. Aspects of the phase structure of the deformations are mapped out, using methods known to supply a non-perturbative definition of undeformed JT gravity. Some features are in qualitative agreement with a semi-classical analysis of the phase structure of two-dimensional black holes in these deformed theories.


Sign in / Sign up

Export Citation Format

Share Document