CRITICAL MAGNETIC FIELD IN CeCoIn5 SUPERCONDUCTOR

2005 ◽  
Vol 19 (20) ◽  
pp. 3243-3248
Author(s):  
JE HUAN KOO ◽  
DOH-HYUN GILL ◽  
GUANGSUP CHO

We investigate the superconducting transition temperature, Tc in the presence of the magnetic field, H in CeCoIn 5. It is shown that phonon-enhanced spin fluctuations drive this superconductivity once more as suggested by us (Phys. Rev.B61, 4289). We know the magnetic dependence of our transition temperature is in good correspondence with experimental data. It is elucidated that the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) superconducting states are closely related to the temperature gradient contributed by the external magnetic field.

1999 ◽  
Vol 13 (29n31) ◽  
pp. 3715-3717 ◽  
Author(s):  
D. G. NAUGLE ◽  
K. D. D. RATHNAYAKA ◽  
K. CLARK ◽  
P. C. CANFIELD

In-plane resistance as a function of magnitude and direction of the magnetic field and the temperature has been measured for TmNi2B2C from above the superconducting transition temperature at 10.7 K to below the magnetic transition TN=1.5 K. The superconducting upper critical field HC2(T) exhibits a large anisotropy and structure in the vicinity of TN. The magnetoresistance above TC is large and changes sign as the direction of the magnetic field is rotated from in-plane to parallel with the c-axis.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Ma-Hsuan Ma ◽  
Erdembayalag Batsaikhan ◽  
Huang-Nan Chen ◽  
Ting-Yang Chen ◽  
Chi-Hung Lee ◽  
...  

AbstractWe report on experimental evidence of non-conversional pairing in In and Sn nanoparticle assemblies. Spontaneous magnetizations are observed, through extremely weak-field magnetization and neutron-diffraction measurements, to develop when the nanoparticles enter the superconducting state. The superconducting transition temperature TC shifts to a noticeably higher temperature when an external magnetic field or magnetic Ni nanoparticles are introduced into the vicinity of the superconducting In or Sn nanoparticles. There is a critical magnetic field and a critical Ni composition that must be reached before the magnetic environment will suppress the superconductivity. The observations may be understood when assuming development of spin-parallel superconducting pairs on the surfaces and spin-antiparallel superconducting pairs in the core of the nanoparticles.


Actuators ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 74
Author(s):  
Tsam Lung You ◽  
Hemma Philamore ◽  
Fumitoshi Matsuno

In this work we present a soft crawler fabricated using a magneto-active elastomer. The crawler is controlled by an external magnetic field to produce two locomotion patterns: peristaltic and caterpillar crawling. Due to its structural simplicity, low mass, wirelessly controlled actuation and compliant body the design of this crawler has the potential to address the key challenges faced by existing crawling robots. Experimental data were gathered to evaluate the performance of the crawler locomotion in a pipe. The results validated the mathematical models proposed to estimate the distance traveled by the crawler. The crawler shows potential for use in exploration of confined spaces.


2011 ◽  
Vol 228-229 ◽  
pp. 1007-1011
Author(s):  
Wei Wei Zhang ◽  
Long Qiu Li ◽  
Guang Yu Zhang ◽  
Hui Juan Dong

The effect of an external magnetic field on the hydration behavior of nanoscopic n-octane plates has been extensively investigated using molecular dynamics simulation in an isothermal-isobaric ensemble. The solute plates with different intermolecular spacing have also been considered to examine the effect of the topology of hydrophobic plates on the adsorption behavior of confined water in the presence of an external magnetic field with an intensity ranging from 0.1T to 1 T. The results demonstrate that magnetic exposure decreases the density of water for the plates with intermolecular spacing of a0 = 4 and 5 Å. This suggests that the free energy barrier for evaporation can be lowered by the applied field, and the hydrophobic solutes consisting of condensed n-octane molecules are apt to aggregate in the aqueous solution. In contrast, the magnetic field improves the dissolution or wetting of solutes comprised of loosely packed n-octane plates of a0=7Å. A magnetic-field-induced adsorption-to-desorption translation, which is in agreement with the experimental results provided by Ozeki, has also been observed for the plates with intermolecular spacing of a0 = 6 Å.


2001 ◽  
Vol 19 (10/12) ◽  
pp. 1259-1272 ◽  
Author(s):  
D. A. Gurnett ◽  
R. L. Huff ◽  
J. S. Pickett ◽  
A. M. Persoon ◽  
R. L. Mutel ◽  
...  

Abstract. In this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1) whistlers, (2) chorus, and (3) auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The frequency-time structure of this radiation usually shows a very good one-to-one correspondence between the various spacecraft. By using the microsecond timing available at the NASA Deep Space Net-work, very-long-baseline radio astronomy techniques have been used to determine the source of the auroral kilometric radiation. One event analyzed using this technique shows a very good correspondence between the inferred source location, which is assumed to be at the electron cyclotron frequency, and a bright spot in the aurora along the magnetic field line through the source.Key words. Ionosphere (wave-particle interactions; wave propagation) – Magnetospheric physics (plasma waves and instabilities; instruments and techniques)


Sign in / Sign up

Export Citation Format

Share Document