NOETHER CHARGES, BLACK HOLES AND THE IMMIRZI PARAMETER

2007 ◽  
Vol 21 (23n24) ◽  
pp. 3990-3992 ◽  
Author(s):  
HOI-LAI YU

We have shown that terms in the action which won't contribute to local equation of motions do contribute to globally conversed physical quantities in classical theories of gravity due to general coordinate covariance. This observation allows one to determining the Immirzi parameter in the Ashtekar variable formulation of gravitational theories even at classical level. Applying Wald's Noether charge approach and identifying the entropy on black hole horizon as the Noether charge for translation, one can demonstrate explicitly that the Immirzi parameter does make its contributions through the boundary term. Our results also shed lights in connecting the Immirzi paramter to quasi-normal modes of black holes.

2015 ◽  
Vol 30 (08) ◽  
pp. 1550044 ◽  
Author(s):  
Hai Lin ◽  
K. Saifullah ◽  
Shing-Tung Yau

We consider spin-[Formula: see text] particles on the background of general accelerating black holes and the C-metric. The Rarita–Schwinger equations of spin-[Formula: see text] particles are analyzed on these backgrounds. The emission and absorption probabilities of these particles on these spacetimes are calculated. These backgrounds which we analyze contain both black hole horizon and acceleration horizon, and have general electric and magnetic charges, rotation, and acceleration parameter. Other physical quantities of the spin-[Formula: see text] field near the acceleration horizon are also computed.


2003 ◽  
Vol 12 (01) ◽  
pp. 121-127 ◽  
Author(s):  
REMO RUFFINI ◽  
LUCA VITAGLIANO

The mass-energy formula of black holes implies that up to 50% of the energy can be extracted from a static black hole. Such a result is reexamined using the recently established analytic formulas for the collapse of a shell and the expression for the irreducible mass of a static black hole. It is shown that the efficiency of energy extraction process during the formation of the black hole is linked in an essential way to the gravitational binding energy, the formation of the horizon and the reduction of the kinetic energy of implosion. Here a maximum efficiency of 50% in the extraction of the mass energy is shown to be generally attainable in the collapse of a spherically symmetric shell: surprisingly this result holds as well in the two limiting cases of the Schwarzschild and extreme Reissner–Nordström space–times. Moreover, the analytic expression recently found for the implosion of a spherical shell to an already formed black hole leads to a new exact analytic expression for the energy extraction which results in an efficiency strictly less than 100% for any physical implementable process. There appears to be no incompatibility between General Relativity and Thermodynamics at this classical level.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
George Hulsey ◽  
Shamit Kachru ◽  
Sungyeon Yang ◽  
Max Zimet

Abstract We study non-supersymmetric extremal black hole excitations of 4d $$ \mathcal{N} $$ N = 2 supersymmetric string vacua arising from compactification on Calabi-Yau threefolds. The values of the (vector multiplet) moduli at the black hole horizon are governed by the attractor mechanism. This raises natural questions, such as “what is the distribution of attractor points on moduli space?” and “how many attractor black holes are there with horizon area up to a certain size?” We employ tools developed by Denef and Douglas [1] to answer these questions.


2015 ◽  
Vol 24 (03) ◽  
pp. 1550022 ◽  
Author(s):  
Ivan Arraut

I derive general conditions in order to explain the origin of the Vainshtein radius inside dRGT. The set of equations, which I have called "Vainshtein" conditions are extremal conditions of the dynamical metric (gμν) containing all the degrees of freedom of the theory. The Vainshtein conditions are able to explain the coincidence between the Vainshtein radius in dRGT and the scale [Formula: see text], obtained naturally from the Schwarzschild de-Sitter (S-dS) space inside general relativity (GR). In GR, this scale was interpreted as the maximum distance in order to get bound orbits. The same scale corresponds to the static observer position if we want to define the black hole temperature in an asymptotically de-Sitter space. In dRGT, the scale marks a limit after which the extra degrees of freedom of the theory become relevant.


2020 ◽  
Vol 35 (31) ◽  
pp. 2050258
Author(s):  
Aloke Kumar Sinha

We had earlier derived the most general criteria for thermal stability of a quantum black hole, with arbitrary number of parameters, in any dimensional spacetime. These conditions appeared in form of a series of inequalities connecting second order derivatives of black hole mass with respect to its parameters. Some black holes like asymptotically flat rotating charged black holes do not satisfy all the stability criteria simultaneously, but do satisfy some of them in certain region of parameter space. They are known as “Quasi Stable” black holes. In this paper, we will show that quasi stable black holes although ultimately decay under Hawking radiation undergo phase transitions. These phase transitions are different from phase transition in ADS Schwarzschild black hole. These are marked by sign changes in certain physical quantities apart from specific heat of the black hole. We will also discuss the changes in the nature of fluctuations of the parameters of these quasi stable black holes with different phases.


2018 ◽  
Vol 16 (04) ◽  
pp. 449-524
Author(s):  
Alexei Iantchenko

We provide the full asymptotic description of the quasi-normal modes (resonances) in any strip of fixed width for Dirac fields in slowly rotating Kerr–Newman–de Sitter black holes. The resonances split in a way similar to the Zeeman effect. The method is based on the extension to Dirac operators of techniques applied by Dyatlov in [Quasi-normal modes and exponential energy decay for the Kerr–de Sitter black hole, Commun. Math. Phys. 306(1) (2011) 119–163; Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black holes, Ann. Henri Poincaré 13(5) (2012) 1101–1166] to the (uncharged) Kerr–de Sitter black holes. We show that the mass of the Dirac field does not have an effect on the two leading terms in the expansions of resonances. We give an expansion of the solution of the evolution equation for the Dirac fields in the outer region of the slowly rotating Kerr–Newman–de Sitter black hole which implies the exponential decay of the local energy. Moreover, using the [Formula: see text]-normal hyperbolicity of the trapped set and applying the techniques from [Asymptotics of linear waves and resonances with applications to black holes, Commun. Math. Phys. 335 (2015) 1445–1485; Resonance projectors and asymptotics for [Formula: see text]-normally hyperbolic trapped sets, J. Amer. Math. Soc. 28 (2015) 311–381], we give location of the resonance free band and the Weyl-type formula for the resonances in the band near the real axis.


2006 ◽  
Vol 15 (12) ◽  
pp. 2293-2302 ◽  
Author(s):  
WALTER D. GOLDBERGER ◽  
IRA Z. ROTHSTEIN

In this essay, we introduce a theoretical framework designed to describe black hole dynamics. The difficulties in understanding such dynamics stems from the proliferation of scales involved when one attempts to simultaneously describe all of the relevant dynamical degrees of freedom. These range from the modes that describe the black hole horizon, which are responsible for dissipative effects, to the long wavelength gravitational radiation that drains mechanical energy from macroscopic black hole bound states. We approach the problem from a Wilsonian point of view, by building a tower of theories of gravity each of which is valid at different scales. The methodology leads to multiple new results in diverse topics including phase transitions of Kaluza–Klein black holes and the interactions of spinning black hole in non-relativistic orbits. Moreover, our methods tie together speculative ideas regarding dualities for black hole horizons to real physical measurements in gravitational wave detectors.


Author(s):  
Sayak Datta ◽  
Sukanta Bose

AbstractWe study the quasi-normal modes (QNMs) of static, spherically symmetric black holes in f(R) theories. We show how these modes in theories with non-trivial f(R) are fundamentally different from those in general relativity. In the special case of $$f(R) = \alpha R^2$$f(R)=αR2 theories, it has been recently argued that iso-spectrality between scalar and vector modes breaks down. Here, we show that such a break down is quite general across all f(R) theories, as long as they satisfy $$f''(0)/(1+f''(0)) \ne 0$$f′′(0)/(1+f′′(0))≠0, where a prime denotes derivative of the function with respect to its argument. We specifically discuss the origin of the breaking of isospectrality. We also show that along with this breaking the QNMs receive a correction that arises when $$f''(0)/(1+f'(0)) \ne 0$$f′′(0)/(1+f′(0))≠0 owing to the inhomogeneous term that it introduces in the mode equation. We discuss how these differences affect the “ringdown” phase of binary black hole mergers and the possibility of constraining f(R) models with gravitational-wave observations. We also find that even though the iso-spectrality is broken in f(R) theories, in general, nevertheless in the corresponding scalar-tensor theories in the Einstein frame it is unbroken.


Sign in / Sign up

Export Citation Format

Share Document