scholarly journals VIBRATIONAL MODES IN SMALL Agn, Aun CLUSTERS: A FIRST PRINCIPLE CALCULATION

2009 ◽  
Vol 23 (31) ◽  
pp. 5819-5834 ◽  
Author(s):  
OLCAY ÜZENGI AKTÜRK ◽  
OĞUZ GÜLSEREN ◽  
MEHMET TOMAK

Although the stable structures and other physical properties of small Ag n and Au n, were investigated in the literature, phonon calculations are not done yet. In this work, we present plane-wave pseudopotential calculations based on density-functional formalism. The effect of using the generalized gradient approximation (GGA) and local density approximation (LDA) to determine the geometric and electronic structure and normal mode calculations of Ag n and Au n, is studied up to eight atoms. Pure Au n and Ag n clusters favor planar configurations. We calculated binding energy per atom. We have also calculated the normal mode calculations and also scanning tunneling microscope (STM) images for small clusters for the first time.

2018 ◽  
Vol 14 (1) ◽  
pp. 60
Author(s):  
Hari Sutrisno

<p>Study of the theoretical  approah to calculate the band structure and density of states (DOS) of vanadium-doped TiO<sub>2</sub> of both anatase and rutile have been done. The first-principle calculations were done using supercell (2x1x1) method. The first-principle calculation of V-doped TiO<sub>2</sub> of both anatase and rutile were analyzed by density-functional theory (DFT) with generalized gradient approximation from Perdew-Burke-Ernzerhof (GGA+PBE), Perdew-Wang’s 1991 (GGA+PW91) and local density approximation (LDA) for exchange-correlation functionals. The calculation of electronic structures show that the V-doped TiO<sub>2</sub>-anatase with high concentration (7.93 %) in 24 atoms are direct- and indirect-gap semiconductor, whereas the V-doped TiO<sub>2</sub>-rutile with high concentration (15.79 %) in 12 atoms is direct-gap semiconductor. The V-doped TiO<sub>2</sub> of both anatase and rutile produce the intermediate bands in the upper states. Ihe V-doped anatase produces intermediate band, which is 2.05, 2.04, 2.06 eV above the valence band for GGA+PBE, GGA+PW91 and LDA, respectively. Meanwhile the V-doped rutile producesintermediate band, which is 1.76, 1.82, 1.74 eV above the valence band for GGA+PBE, GGA+PW91 and LDA, respectively.</p>


2015 ◽  
Vol 29 (05) ◽  
pp. 1550028 ◽  
Author(s):  
R. Graine ◽  
R. Chemam ◽  
F. Z. Gasmi ◽  
R. Nouri ◽  
H. Meradji ◽  
...  

We carried out ab initio calculations of structural, electronic and optical properties of Indium nitride ( InN ) compound in both zinc blende and wurtzite phases, using the full-potential linearized augmented plane wave method (FP-LAPW), within the framework of density functional theory (DFT). For the exchange and correlation potential, local density approximation (LDA) and generalized gradient approximation (GGA) were used. Moreover, the alternative form of GGA proposed by Engel and Vosko (EV-GGA) and modified Becke–Johnson schemes (mBJ) were also applied for band structure calculations. Ground state properties such as lattice parameter, bulk modulus and its pressure derivative are calculated. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show good agreement with the available data. The calculated band structure shows a direct band gap Γ → Γ. In the optical properties section, several optical quantities are investigated; in particular we have deduced the interband transitions from the imaginary part of the dielectric function.


1995 ◽  
Vol 384 ◽  
Author(s):  
Zhi-Qiang Li ◽  
Yuichi Hashi ◽  
Jing-Zhi Yu ◽  
Kaoru Ohno ◽  
Yoshiyuki Kawazoe

ABSTRACTThe electronic structure and magnetic properties of rhodium clusters with sizes of 1 - 43 atoms embedded in the nickel host are studied by the first-principles spin-polarized calculations within the local density functional formalism. Single Rh atom in Ni matrix is found to have magnetic moment of 0.45μB. Rh13 and Rhl 9 clusters in Ni matrix have lower magnetic moments compared with the free ones. The most interesting finding is tha.t Rh43 cluster, which is bulk-like nonmagnetic in vacuum, becomes ferromagnetic when embedded in the nickel host.


2016 ◽  
Vol 30 (35) ◽  
pp. 1650414 ◽  
Author(s):  
Mingliang Wang ◽  
Zhe Chen ◽  
Dong Chen ◽  
Cunjuan Xia ◽  
Yi Wu

The structural, elastic and thermodynamic properties of the A15 structure V3Ir, V3Pt and V3Au were studied using first-principles calculations based on the density functional theory (DFT) within generalized gradient approximation (GGA) and local density approximation (LDA) methods. The results have shown that both GGA and LDA methods can process the structural optimization in good agreement with the available experimental parameters in the compounds. Furthermore, the elastic properties and Debye temperatures estimated by LDA method are typically larger than the GGA methods. However, the GGA methods can make better prediction with the experimental values of Debye temperature in V3Ir, V3Pt and V3Au, signifying the precision of the calculating work. Based on the E–V data derived from the GGA method, the variations of the Debye temperature, coefficient of thermal expansion and heat capacity under pressure ranging from 0 GPa to 50 GPa and at temperature ranging from 0 K to 1500 K were obtained and analyzed for all compounds using the quasi-harmonic Debye model.


2021 ◽  
Vol 1028 ◽  
pp. 199-203
Author(s):  
Fiqhri Heda Murdaka ◽  
Edi Suprayoga ◽  
Abdul Muizz Pradipto ◽  
Kohji Nakamura ◽  
Agustinus Agung Nugroho

We report the estimation of muon sites inside Mn3Sn using density functional theory based on the full-potential linearized augmented plane wave (FLAPW) calculation. Our calculation shows that the Perdew–Burke–Ernzerhof (PBE) Generalized-Gradient Approximation (GGA) functional is closer to the experimental structure compared to the von Barth-Hedin Local Density Approximation (LDA)-optimized geometry. The PBE GGA is therefore subsequently used in FLAPW post-calculation for the electrostatic potential calculation to find the local minima position as a guiding strategy for estimating the muon site. Our result reveals at least two muon sites of which one is placed at the center between two Mn-Sn triangular layers (A site) and the other at the trigonal prismatic site of Sn atom (B site). The total energy of Mn3Sn system in the presence of muon at A site or B site are compared and we find that A site is a more favorable site for muon to stop.


2006 ◽  
Vol 84 (2) ◽  
pp. 115-120 ◽  
Author(s):  
G Y Gao ◽  
K L Yao ◽  
Z L Liu

First-principles calculations of the electronic structure are performed for cubic BaTbO3 using the plane-wave pseudopotential method within the framework of density functional theory and using the generalized gradient approximation for the exchange-correlation potential. Our calculations show that cubic BaTbO3 is metallic, and that this metallic character is mainly governed by the Tb 4f electrons and the hybridization between the Tb 5d and O 2p states. From the analysis of the density of states, band structure, and charge density contour, we find that the chemical bonding between Tb and O is covalent while that between Ba and TbO3 is ionic. PACS Nos.: 71.15.Mb, 71.20.-b


1996 ◽  
Vol 11 (9) ◽  
pp. 2206-2213 ◽  
Author(s):  
Yoshio Itsumi ◽  
D. E. Ellis

Electronic structure calculations were carried out for bcc iron (Fe) clusters with or without hydrogen (H), and also involving a vacancy, using the self-consistent Discrete Variational method (DV-Xα) within the local density functional formalism. Bonding characteristics investigated show the following: (i) Interstitial H notably decreases interatomic Fe–Fe bond strengths, but acts over a small distance (within 0.3 nm). (ii) In the perfect Fe lattice field, interstitial H feels a repulsive force at any site. As a result of lattice relaxation, volume expansion may be expected. (iii) H in combination with a vacancy prefers a position shifted from the octahedral site toward the vacancy. This is fairly consistent with an experimental result.


2019 ◽  
Vol 16 (2) ◽  
pp. 77 ◽  
Author(s):  
Muhammad Zamir Mohyedin ◽  
Afiq Radzwan ◽  
Mohammad Fariz Mohamad Taib ◽  
Rosnah Zakaria ◽  
Nor Kartini Jaafar ◽  
...  

Bi2Se3 is one of the promising materials in thermoelectric devices and very useful out of environmental concern due to its efficiency to perform at room temperature. Based on the first-principles calculation of density functional theory (DFT) by using CASTEP computer code, structural and electronic properties of Bi2Se3 were investigated. The calculation is conducted within the exchange-correlation of local density approximation (LDA) and generalized gradient approximation within the revision of Perdew-Burke-Ernzerhof (GGA-PBE) functional. It was found that the results are consistent with previous works of theoretical study with small percentage difference. LDA exchange-correlation functional method is more accurate and have a better agreement than GGA-PBE to describe the structural properties of Bi2Se3 which consist of lattice parameters. LDA functional also shown more accurate electronic structure of Bi2Se3 that consist of band structure and density of states (DOS) which consistent with most previous theoretical works with small percentage difference. This study proves the reliability of CASTEP computer code and show LDA exchange-correlation functional is more accurate in describing the nature of Bi2Se3 compared to the other functionals.


Author(s):  
Ahmad A. Mousa ◽  
Jamil M. Khalifeh

Structural, electronic, elastic and mechanical properties of ScM (M[Formula: see text][Formula: see text][Formula: see text]Au, Hg and Tl) intermetallic compounds are studied using the full potential-linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT), within the generalized gradient approximation (GGA) and the local density approximation (LDA) to the exchange-correlation approximation energy as implemented in the Wien2k code. The ground state properties including lattice parameters, bulk modulus and elastic constants were all computed and compared with the available previous theoretical and experimental results. The lattice constant was found to increase in contrast to the bulk modulus which was found to decrease with every substitution of the cation (M) starting from Au till Tl in ScM. Both the electronic band structure and density-of-states (DOS) calculations show that these compounds possess metallic properties. The calculated elastic constants ([Formula: see text], [Formula: see text] and [Formula: see text] confirmed the elastic stability of the ScM compounds in the B2-phase. The mechanical properties and ductile behaviors of these compounds are also predicted based on the calculated elastic constants.


Author(s):  
Mohammed Benali Kanoun ◽  
Souraya Goumri-Said

First-principles calculations are performed by taking into account the strong correlation effects on ceria. To obtain an accurate description including f electrons, the authors optimized the Coulomb U parameter for use in Local-Density Approximation (LDA) and Generalized Gradient Approximation (GGA) calculation. A good agreement with experimental data is obtained within the GGA+U (Wu-Cohen scheme). Elastic stiffness constants are found in correct agreement with the available experimental results. Born effective charge, dielectric permittivity, and the phonon-dispersion curves are computed using density functional perturbation theory. The origin of magnetism in undoped ceria with intrinsic defects is investigated. The authors show that both of Ce and O vacancies induce local moments and ferromagnetism without doping ceria by magnetic impurities in this chapter.


Sign in / Sign up

Export Citation Format

Share Document