OPTICAL PROPERTIES OF MOLECULAR SYSTEM COUPLED TO THE SOLVENT

2009 ◽  
Vol 23 (31) ◽  
pp. 5801-5809 ◽  
Author(s):  
A. ROMERO-DEPABLOS ◽  
J. L. PAZ ◽  
A. MENDOZA-GARCÍA ◽  
P. MARTÍN ◽  
E. CASTRO

Analytic approximations for the absorption coefficient and refraction index have been obtained for a two-level molecular system in the presence of a four-wave mixing signal. Stochastic collisions among solute–solvent molecules produce a broadening of the upper level of energy. In this work, we have used four generalized Lorentzian approximants of the Voigt function as probability distribution, calculated by the two-point quasi-rational approximant method previously denoted as asymptotical Padé technique, for the evaluation of the average values of the Fourier components associated to the induced coherences. The innovation of this type of distributions allows us, by taking appropriate limits, to find similar profiles of optical properties as those using Gaussian and Lorentzian distribution functions.

2016 ◽  
Vol 25 (02) ◽  
pp. 1650016 ◽  
Author(s):  
J. L. Paz ◽  
Luis G. Rodríguez ◽  
Juan F. Cárdenas ◽  
Cesar Costa-Vera

Nonlinear optical properties of a two-level molecular system immersed in a thermal bath have been studied in the present work. Solvent effects were explicitly considered by modeling the non-radiative interaction with the solute as a random variable. The innovation of this treatment is that it allows us to take into account the environment, inducing quantum effects not considered by classical treatment. The major contribution of the methodology proposed in this work, is the implementation of an approximant to the Voigt function as a probability distribution, because it allow us to cover a wider range of possible interactions among the solvent and the molecular system by simple changing the parameters [Formula: see text] and [Formula: see text], associated to the variances of the Lorentzian and Gaussian distributions, respectively.


2012 ◽  
Vol 21 (02) ◽  
pp. 1250016 ◽  
Author(s):  
A. MASTRODOMENICO ◽  
M. A. IZQUIERDO ◽  
J. L. PAZ

The stochastic effects of a thermal bath on a two-level molecular system interacting with a classical electromagnetic field are considered. The collective effects are modeled as a random Bohr frequency, whose manifestation is the broadening of the upper level according to a prescribed random function. A methodology based in cumulant expansions to obtain the average in the Fourier components associated with the coherence and populations, calculated by Optical Stochastic Bloch Equations (OSBE), is employed. The Four-wave mixing signal intensity as a function of the detuning of the pump beam, parametrized by the ratio of the relaxation times and other variables, is analyzed.


2018 ◽  
Vol 84 (1) ◽  
pp. 10503 ◽  
Author(s):  
Rong-kun Ma ◽  
Jing Xia ◽  
Yun-tuan Fang

In order to achieve enhanced transmittance of parity-time (PT)-symmetric system, we design a layered PT-symmetric structure including resonators. We use the scatter matrix method to study the optical properties of the designed structure under the modulation of resonators. The structure system takes on a singular pole effect, i.e., the huge reflectance and transmittance occur at a special wavelength and period number. The field distribution reveals that the singular pole results from the coupling resonance of single cavity and the whole structure. Because of the coupling resonance, the total gain in layer A is much larger than the total loss in layer C. The reflectance and transmittance at the singular pole take on a high sensitivity on the refraction index of the resonators.


2010 ◽  
Vol 19 (03) ◽  
pp. 427-436
Author(s):  
A. MENDOZA-GARCÍA ◽  
A. ROMERO-DEPABLOS ◽  
M. A. ORTEGA ◽  
J. L. PAZ ◽  
L. ECHEVARRÍA

We have developed an analytical method to describe the optical properties of nanoparticles, whose results are in agreement with the observed experimental behavior according to the size of the nanoparticle under analysis. Our considerations to describe plasmonic absorption and dispersion are based on the combination of the two-level molecular system and the two-dimensional quantum box models. Employing the optical stochastic Bloch equations, we have determined the system's coherence, from which we have calculated expressions for the absorption coefficient and refractive index. The innovation of this methodology is that it allows us to take into account the solvent environment, which induce quantum effects not considered by classical treatments.


2021 ◽  
Vol 2 (1) ◽  
pp. 012-027
Author(s):  
M. Sathish ◽  
K. Venkataramanan ◽  
R. Padmanaban ◽  
Helan Ruth ◽  
K. Vadivel ◽  
...  

In this work, acoustic, thermal, and optical properties were tested on the different concentrations of the Disodium Tartrate solutions. First, the viscosity studies were analyzed for the Disodium tartrate in the concentration range from 2% to 20% with different temperatures 303K, 308K, 313K, and 318K. It was noted that the relative viscosity and the activation energy of the prepared compound increase with increases in concentration and decreases with temperature increases. The properties like density and ultrasonic velocity are varied when increases the concentration of the aqueous solutions of Disodium Tartrate. In this study, the values of adiabatic compressibility show an inverse behavior when compared with ultrasonic velocity due to the interaction between solute and solvent molecules. Also observed that the inter-molecular free length is maximum for a lower percentage. The free volume for the compound is maximum at 2% and a minimum of 20%, since it reduces when the internal pressure increases. It was revealed that the classical absorption coefficient and relaxation time for Disodium Tartrate is minimum for lower percentage and minimum for a higher percentage. The interactions between the solute and solvent are confirmed through the property like specific Acoustical impedance. It was noted that the increase in internal pressure increases the concentration of the compound. The ion-solvent interaction was discussed by the relative association study, thus the values of relative association increases with an increase in concentration. The Rao’s and Wada’s constant increases linearly in aqueous solutions of Disodium Tartrate for the entire system.


2014 ◽  
Vol 11 (2) ◽  
pp. 554-559
Author(s):  
Baghdad Science Journal

In this study, Epoxy Resin plates was prepared by mixing epoxy(A) and hardner(B)with ratio(A:B) (3:1) with different thickness (0.3-0.96)cm. The effect of thickness on optical properties have been studied (absorption ,transmission ,reflectance) also the optical constant were found like (absorption coefficient, extenuation coefficient and refraction index) for all of the prepared plates. The results have shown that by increasing the thickness of plates., the absorption intensity increase in which at plates thickness (0.3-0.96)cm the absorption intensity were(1.54-1.43) respectively, and since absorption peak for epoxy occur in ultraviolet region and exactly at wavelength(368)nm and energy gap(Eg=3.05 eV) thus their good transmittance in the visible light region The plates have transmittance of about (60-83.4)% in visible region ,the refraction index for Elda epoxy is (n= 1.53 ) and its reflectance is (R=4 )% at wavelength (368 nm).


Cirrus ◽  
2002 ◽  
Author(s):  
Vitaly I. Khvorostyanov ◽  
Kenneth Sassen

The impact of cloudiness on the global radiative budget and its climatic consequences have been widely discussed during the last three decades. It was gradually recognized that the climatic effect of cloudiness depends on its height: low- and middle-level cloudiness have a total cooling effect on the Earth climatic system, while the upper-level clouds, cirrus, may have mostly a warming effect (IPCC 1995). The net effect of cirrus (i.e., warming or cooling), is much less clear because neither their microphysical and optical properties, nor the processes that govern their formation, are well understood and parameterized in climate models. These uncertainties have stimulated several major field projects performed within the International Satellite Cloud Climatology Project (ISCCP; Rossow and Schiffer 1991) with subsequent data analysis reports [e.g., FIRE IFO-I (1990), FIRE IFO-II (1995), and EUCREX (Raschke et al. 1996)]. The relevant theoretical works, and even the simplest climate models, indicate that the climatic impact of cirrus depends on their microstructure: clouds composed of small crystals with effective radii less than about 16 μm have a total cooling effect, but clouds of larger crystals have a warming effect (Stephens et al. 1990). It was shown that the total cloud forcing at the top of the atmosphere (TOA) is positive from a few to a few tens of watts per square meter for the large crystals and decreases with decreasing crystal radius (Fu and Liou 1993). Most of the previous theoretical studies of cirrus radiative properties, after choosing some model of microphysics and some values for the mass extinction and absorption coefficients, then prescribed them to the whole cloud, neglecting any vertical variations. Simulations with general circulation models (GCMs) showed that cirrus clouds with their optical properties parameterized in such a way (i.e., constant with height) have a total warming effect and positive feedbacks with respect to greenhouse gas-induced global warming (e.g., Ramanathan et al. 1983; Wetherald and Manabe 1988). Today, the estimation of the warming/cooling effect of cirrus has become even more complicated due to two factors. First, for many years the usual in situ probes allowed the measurement of ice crystals with radii only larger than 25-50 μm, so the smallest and most optically and radiatively active crystals were unresolved.


Sign in / Sign up

Export Citation Format

Share Document