FIBER-CONTINUOUS PILLAR-BOARD BIOCOMPOSITE STRUCTURE IN TUMBLEBUG ELYTRA

2010 ◽  
Vol 24 (01n02) ◽  
pp. 191-200
Author(s):  
B. CHEN ◽  
Q. YUAN ◽  
J. H. FAN ◽  
J. G. WANG ◽  
J. LUO

The observation of scanning electron microscope (SEM) showed that Tumblebug elytra consist of almost parallel upper and lower cuticles. Both of which are a kind of chitin-fiber-reinforced composite. There is a kind of chitin-fiber-reinforced composite pillars between the upper and lower cuticles, which support and connect the upper and lower cuticles uprightly. More careful observation showed that the chitin fibers in the pillars smoothly extend to the upper and lower composite cuticles forming a kind of fiber-continuous pillar-board composite (FCPBC) structure. Based on the observation, two kinds of pillar-board composite structure specimens, respective with continuous and discontinuous glass fibers, were fabricated with molding and felting processes. The rupture strengths of the two kinds of the specimens were tested and compared. It showed that the rupture strength of the specimens of the FCPBC structure is markedly larger than that of the specimens of the fiber-discontinuous pillar-board composite (FDPBC) structure. At last, the experimental result was analyzed for illumining the mechanism of the FCPBC structure in the enhancement of the strength.

2004 ◽  
Vol 5 (2) ◽  
pp. 14-26 ◽  
Author(s):  
Lippo V.J. Lassila ◽  
Pekka K. Vallittu

Abstract The aim of this study was to investigate the influence of the position of the fiber rich layer on the flexural properties of fiber-reinforced composite (FRC) construction. In addition, the total residual monomer content of FRC was quantitatively determined to find out the difference of the effectiveness of two types of light-curing units using liquid chromatography (HPLC). Unidirectional continuous E-glass FRC and hybrid particulate filler composite resins were used in the fabrication of test specimens. Four different positions of the FRC layer were used: compression, neutral, tension, and vertical side position. A three-point bending test (ISO 10477) was performed to measure the flexural properties of the specimens. Position of the FRC layer had a significant effect on the flexural strength (p<0.001, ANOVA). Also, the type of light-curing device had an effect on flexural strength (p<0.001). Specimens with FRC positioned on the compression side showed flexural strength of approximately 250 MPa, whereas FRC positioned on the tension side showed strength ranging from 500 to 600 MPa. Mean flexural modulus with FRC placed horizontally ranged between 9-12 GPa; no significant difference was found between these groups. However when fiber reinforcement was positioned vertically, the flexural modulus raised up to 16 GPa. Specimens with 24 vol% glass fibers contained 52% less residual monomer than specimens without glass fibers. The monomer content was lower in specimens polymerized with the curing device with higher polymerization temperature. In order to optimize flexural strength of low fiber volume fraction, the fibers should be placed at the tension side of the specimen. Citation Lassila LVJ, Vallittu PK. The Effect of Fiber Position and Polymerization Condition on the Flexural Properties of Fiber-Reinforced Composite. J Contemp Dent Pract 2004 May;(5)2:014-026.


2014 ◽  
Vol 936 ◽  
pp. 1356-1360
Author(s):  
Jun Fei Yin ◽  
Yu Zhang ◽  
Ting Ting Yan ◽  
He Qiu

In this study, jute fibers and polypropylene fiber (PP) were added into cement-based mortar to improve their compressive strength. Results obtained have shown that the compressive strength of the motar was perfect with jute fiber of 19mm length at the fiber contents of 0.8 kg·m-3. The reinforcing mechanism of fiber in the motar was analyzed by means of comparing of the mortar compressive properties under different circumstances, and the testing results of scanning electron microscope (SEM) and the addition of filament in experiments.


Fibers ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 83
Author(s):  
Andrey E. Krauklis

Fiber-reinforced composite materials are often used in structural applications in humid, marine, and offshore environments. Superior mechanical properties are compromised by environmental ageing and hydrolytic degradation. Glass fibers are the most broadly used type of fiber reinforcement to date. However, they are also most severely affected by environmental degradation. The glass fiber degradation rates depend on: (1) glass formulation; (2) environmental factors: pH, T, stress; (3) sizing; (4) matrix polymer; (5) fiber orientation and composite layup. In this short review (communication), seven modules within the Modular Paradigm are reviewed and systematized. These modeling tools, encompassing both trivial and advanced formulas, enable the prediction of the environmental ageing of glass fibers, including the kinetics of mass loss, fiber radius reduction, environmental crack growth and loss of strength. The modeling toolbox is of use for both industry and academia, and the Modular Paradigm could become a valuable tool for such scenarios as lifetime prediction and the accelerated testing of fiber-reinforced composite materials.


2016 ◽  
Vol 1133 ◽  
pp. 121-125
Author(s):  
Hanif Muqsit ◽  
Ali Nawaz Mengal ◽  
Saravanan Karupannan

In this study, the focus was on the optimum design of laminate stacking sequences (LSS) of basalt fiber reinforced composite (BFRP) structure. Eleven rectangular composite panels with different stacking sequences and fiber orientations were analyzed. A three-point flexural test according to ASTM D790 was carried out in ANSYS to simulate the basalt fiber reinforced composite layup flexural strength. From the results, it was found that the composite structure layup of [0/0/45/0/0]s has the highest strength among all samples.


2019 ◽  
Vol 57 (2) ◽  
pp. 131-139
Author(s):  
Madalina Anca Moldovan (Lazar) ◽  
Adina Bianca Bosca ◽  
Calin Rares Roman ◽  
Cristina Prejmerean ◽  
Doina Prodan ◽  
...  

Although autologous bone graft is the gold standard in bone reconstruction, the limited volume, the morbidity associated with the donor site, the dificult modelling of complex forms and the unpredictable rate of resorption fuel the researches towards the development of alloplastic materials as bone substitutes. A new fiber reinforced composite (FRC) was developed using 35% combination of monomers bisphenol A glycidylmethacrylate [bis-GMA], urethane dimethacrylate [UDMA], triethylene glycol dimethacrylate [TEGDMA], hydroxyethyl methacrylate [HEMA]) and 65% E-glass fibers (300 g/mp). Sixteen (n=16) male Wistar rats were used for the study. The experimental group (n=12) received intrafemoral implants of FRC. The control group (n=4) received intrafemoral titanium implants. After one month and three months respectively, tissues adjacent to implants were histologically evaluated. The intensity of the bone tissue inflammatory reaction, as well as the presence of the osteoblasts and the newly formed bone on the implant surface were the main criteria assessed. The FRC material determined a similar tissue reaction to Ti specimens, at one and three months follow-up. Both materials, inserted in the medullary canal, were surrounded by a fibrous connective tissue capsule, which, as time passed, underwent intramembranous ossification process. Fiber reinforced composite may be considered a promising alternative to titanium implants in critical size defects reconstruction.


Sign in / Sign up

Export Citation Format

Share Document