DYNAMICS IN PERTURBED VERY DILUTE AQUEOUS SOLUTIONS: THEORY AND EXPERIMENTAL EVIDENCE

2013 ◽  
Vol 27 (05) ◽  
pp. 1350005 ◽  
Author(s):  
TAMAR A. YINNON ◽  
VITTORIO ELIA

Perturbed very dilute aqueous solutions are investigated by analyzing their electric conductivity (χ). Foci include titrations and quasi-periodic oscillations of χ spanning several months. The χ data reflect persistent dissipative supramolecular self-organization. This paper's successful consistent explanations of the χ measurements corroborate earlier quantum field theoretical predictions. For example: (1) Permanent polarization results from quantum electro-dynamical interactions mediated auto-ordering of water molecules and molecular aggregates which have electric dipole moments. (2) The aggregates are created by exciting very dilute aqueous solutions, generating long lasting (cold) vortices in crystalline-like-structured super-fluidic domains. These domains are only present when the concentration (C) is lower than a solute dependent transitions concentration (C trans ). Typically, C trans is of the order of 10-4 M or below.

Universe ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 56
Author(s):  
Florian Kuchler on behalf of the TUCAN and HeXeEDM Collaborations

Searches for permanent electric dipole moments (EDMs) of fundamental particles, atoms and molecules are promising experiments to constrain and potentially reveal beyond Standard Model (SM) physics. A non-zero EDM is a direct manifestation of time-reversal (T) violation, and, equivalently, violation of the combined operation of charge-conjugation (C) and parity inversion (P). Identifying new sources of CP violation can help to solve fundamental puzzles of the SM, e.g., the observed baryon-asymmetry in the Universe. Theoretical predictions for magnitudes of EDMs in the SM are many orders of magnitude below current experimental limits. However, many theories beyond the SM require larger EDMs. Experimental results, especially when combined in a global analysis, impose strong constraints on CP violating model parameters. Including an overview of EDM searches, I will focus on the future neutron EDM experiment at TRIUMF (Vancouver). For this effort, the TUCAN (TRIUMF Ultra Cold Advanced Neutron source) collaboration is aiming to build a strong, world leading source of ultra cold neutrons (UCN) based on a unique combination of a spallation target and a superfluid helium UCN converter. Another focus will be the search for an EDM of the diamagnetic atom 129 Xe using a 3 He comagnetometer and SQUID detection. The HeXeEDM collaboration has taken EDM data in 2017 and 2018 in the magnetically shielded room (BMSR-2) at PTB Berlin.


2016 ◽  
Vol 31 (14n15) ◽  
pp. 1650082 ◽  
Author(s):  
Takeshi Fukuyama ◽  
Koichiro Asahi

We clarify the conditions or assumptions under which theoretical predictions of various models beyond the standard model give mainly in electric dipole moments. The correct interpretation of those conditions seems to be indispensable to the refinements of model building as well as to the mutual reliance in experimental and theoretical communities. The connections of these analyses to the recent experimental results at the LHC and the other places are also discussed.


2019 ◽  
Vol 55 (8) ◽  
Author(s):  
A. Gutiérrez-Rodríguez ◽  
M. Köksal ◽  
A. A. Billur ◽  
M. A. Hernández-Ruíz

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Joachim Brod ◽  
Emmanuel Stamou

Abstract Electric dipole moments are sensitive probes of new phases in the Higgs Yukawa couplings. We calculate the complete two-loop QCD anomalous dimension matrix for the mixing of CP-odd scalar and tensor operators and apply our results for a phenomenological study of CP violation in the bottom and charm Yukawa couplings. We find large shifts of the induced Wilson coefficients at next-to-leading-logarithmic order. Using the experimental bound on the electric dipole moments of the neutron and mercury, we update the constraints on CP-violating phases in the bottom and charm quark Yukawas.


2021 ◽  
Vol 815 ◽  
pp. 136136
Author(s):  
Michael J. Ramsey-Musolf ◽  
Juan Carlos Vasquez

Sign in / Sign up

Export Citation Format

Share Document