Reflective three-port high-efficiency grating with two dielectric layers based on a sandwiched configuration

2016 ◽  
Vol 30 (12) ◽  
pp. 1650072 ◽  
Author(s):  
Hongtao Li ◽  
Bo Wang ◽  
Hao Pei ◽  
Wenhao Shu ◽  
Li Chen ◽  
...  

In this paper, we describe a novel reflective sandwiched three-port grating with two dielectric layers. The two-layer sandwiched grating can separate incident wave into the [Formula: see text] and the 0th-order with high-efficiency beam splitting and good splitting ratios for both transverse electric (TE) and transverse magnetic (TM) polarizations. The grating parameters can be optimized by using rigorous coupled-wave analysis (RCWA) with a special duty cycle of 0.6. With the optimized results, efficiencies more than 32% in the [Formula: see text]st-orders and the 0th-order can be obtained. Furthermore, performance of the incident bandwidth and aspect ratio can be improved. Compared with conventional surface-relief grating, the grating with sandwiched structure is aimed at cleaning and protecting grating surface. The presented reflective two-layer sandwiched three-port grating would be put into practical applications for its beneficial performances.

2019 ◽  
Vol 33 (25) ◽  
pp. 1950305 ◽  
Author(s):  
Wenhua Zhu ◽  
Bo Wang ◽  
Chenhao Gao ◽  
Kunhua Wen ◽  
Ziming Meng ◽  
...  

This paper designed a novel three-output reflective packaged grating. The optimized parameters such as the period and depth of the high-efficiency three-output grating with an incident wavelength of 1550 nm can be calculated by rigorous coupled-wave analysis (RCWA). According to the optimized result, the grating can diffract the incident light energy into three orders with an efficiency of nearly 33% under the premise of second Bragg angle incidence and the given duty ratio of 0.5. The diffraction efficiency of the packaged grating is improved compared to the surface-relief three-output grating under second Bragg angle incidence, especially for TE-polarized light.


2016 ◽  
Vol 30 (06) ◽  
pp. 1650070 ◽  
Author(s):  
Wenhao Shu ◽  
Bo Wang ◽  
Hongtao Li ◽  
Liang Lei ◽  
Li Chen ◽  
...  

An encapsulated grating with a metal slab is designed as a reflection three-port beam splitter at the wavelength of 1550 nm under normal incidence. Such a new grating is aimed to separate energies into the ±1st and the 0th orders for both TE and TM polarizations. The grating parameters such as grating period, duty cycle and grating depth are optimized by using rigorous coupled-wave analysis. Based on optimized grating parameters, efficiencies can reach more than 32% with the polarization-independent property. It indicates that reflection three-port beam splitter with high efficiency can be obtained by the encapsulated grating. Moreover, the presented reflection three-port grating has advantages of wide incident wavelength range and angular bandwidth, which would be useful in practical application.


2019 ◽  
Vol 33 (11) ◽  
pp. 1850129
Author(s):  
Wenhua Zhu ◽  
Bo Wang ◽  
Chenhao Gao ◽  
Kunhua Wen ◽  
Ziming Meng ◽  
...  

We design and optimize the embedded dual-function grating with connecting layer in Littrow mounting. By using modal method and rigorous coupled-wave analysis, grating parameters are analyzed and calculated including grating groove depth, thickness of connecting layer, and so on. The grating device can diffract the transverse electric-polarized plane light mainly in the first-diffractive order with high-diffraction efficiency of 98.36%. Meanwhile, for the transverse magnetic-polarized plane light, the diffraction efficiencies in the zeroth-order and the first-order corresponding to 49.34% and 49.29% are obtained, respectively.


2016 ◽  
Vol 12 (2) ◽  
pp. 4278-4290
Author(s):  
Faouzi Ghmari ◽  
Ilhem Mezni

The purpose of this paper is to study the radiative properties of two model structures. The first model (A-1) is a rectangular grating of silicon (Si). The second one (A-2) is obtained from A-1 by filling their trenches by SiO2. These patterned wafers are characterized by three geometrical parameters, the period d, the filling factorand the thickness h. To derive and compute the radiative properties we use a rigorous coupled wave analysis (RCWA) method. Our attention is focused on the absorptance of these structures when they are illuminated by a monochromatic plane wave. We investigate the effect of the filling factor on the absorptance versus the direction of the incident wave. At specific angles of incidence the effect of the period is also studied. Besides, the influence of the thickness h on the absorptance is included throughout this work. At the wavelength = 632,8nm, we especially show that we can identify several perfect absorber model structures characterized by specific parameters and by accurate angle of incidence. We show that this will be done in both transverse electric (TE) and transverse magnetic (TM) polarization cases.


2018 ◽  
Vol 32 (31) ◽  
pp. 1850386 ◽  
Author(s):  
Chenhao Gao ◽  
Bo Wang ◽  
Hongtao Li ◽  
Kunhua Wen ◽  
Ziming Meng ◽  
...  

We propose and investigate a polarization-independent high-efficiency encapsulated subwavelength grating with a connecting layer in this paper. Numerical simulated method of rigorous coupled-wave analysis is adopted for optimization. Based on the simulated precise results, a simplified modal method is used to give perspicuous physical propagating fundamentals and explain wideband performance in the grating, where the coupled efficiencies by means of the simplified modal method are to be in conformity with the calculated values of the rigorous coupled-wave analysis for TE and TM polarizations. Compared with the researched surface-relief polarization-independent single-port grating, efficiencies are improved with 98.1% for TE polarization and 98.2% for TM polarization. Hence, the novel gratings with some superiorities are suitable for promising photonic devices.


2013 ◽  
Vol 310 ◽  
pp. 481-485
Author(s):  
Ke Zhao ◽  
Xiao Min Lei ◽  
Guo Feng Xie ◽  
Wen Hua Xiong

Based on a silicon-on-insulator (Silicon-on-insulator, SOI) material system design and optimization of a high performance, the polarization independent of 1 × 3 subwavelength grating stars beam splitter. By a rigorous coupled-wave analysis method showed that, in the 1550nm wavelength range, at vertical incidence, the device on the transverse electric field (transverse electric, TE) ,the 0 and ± 1 order transmittance is 31%, 32%, 32%,respectively; cross the magnetic field (transverse magnetic, TM), the 0 and ± 1 transmittance is 33%, 32%, 32%, respectively.


2008 ◽  
Vol 25 (5) ◽  
pp. 1684-1686 ◽  
Author(s):  
Kong Wei-Jin ◽  
Yun Mao-Jin ◽  
Liu Shi-Jie ◽  
Jin Yun-Xia ◽  
Fan Zheng-Xiu ◽  
...  

2021 ◽  
Author(s):  
Zefan Lin ◽  
Bo Wang ◽  
Chen Fu

Abstract A novel wideband terahertz polarization beam splitter with special diffraction orders working at terahertz band is described in this paper. The polarizer can achieve high diffraction efficiency and uniformity in the 2.50 - 2.56 THz band. Based on rigorous coupled-wave analysis (RCWA) and simulated annealing algorithm, we proposed an efficient algorithm to optimize the polarizer. After calculations, 98.45% single-port high-efficiency reflection for transverse electric (TE) polarization and 42.33%/42.57% highly uniform dual-port beam splitting for transverse magnetic (TM) polarization were finally obtained. In addition, through RCWA and simplified modal method, the electromagnetic field distributions of TE and TM polarizations are shown visually and described quantitatively. Moreover, the results displayed in Sec. 3 prove that the grating possesses the characteristics of relatively large bandwidth and insensitivity to the incident angle. Therefore, the novel scheme in this paper has great reference value for the research of terahertz modulation devices and the integration of terahertz communication systems.


2018 ◽  
Vol 32 (04) ◽  
pp. 1850042
Author(s):  
Hao Pei ◽  
Bo Wang ◽  
Wenhua Zhu ◽  
Sufang Yin ◽  
Li Chen ◽  
...  

The novel reflective grating was studied under Littrow incidence as one sort of high-efficiency optical element. A covering layer and a dielectric layer are employed in this structure to achieve higher efficiency and wider bandwidth. For the given wavelength of 1550 nm, by using two-beam-interference theory of modal method, duty cycle and period of grating can be calculated, where the physical essence of high efficiency in the first-order is well explained by the modal method. The other grating parameters are optimized by using rigorous coupled-wave analysis. The optimized grating has an appropriate aspect ratio and shows that diffraction efficiencies of TE and TM polarizations in the first-order are greater than 97%. Compared with the reported surface-relief high-efficiency grating, the diffraction efficiencies of the proposed grating for TE and TM polarizations can be greatly improved.


2011 ◽  
Vol 211-212 ◽  
pp. 465-468
Author(s):  
De Wei Chen

Since the development almost a decade ago of the first biosensor based on surface plasmon resonance (SPR), the use of this technique has increased steadily. In this study, we theoretically investigated the sensing character of SPR sensor with reflection type metallic with Rigorous Coupled Wave Analysis (RCWA) method, and the mechanism is analyzed by the field distribution. It is found that the sensitivity of negative diffraction order, which goes higher quickly as the resonant angle increases, is much greater than that of positive diffraction order.


Sign in / Sign up

Export Citation Format

Share Document