Mechanical and thermodynamic properties of intermetallic compounds in the Ni–Ti system

2017 ◽  
Vol 31 (22) ◽  
pp. 1750161 ◽  
Author(s):  
Y. F. Li ◽  
S. L. Tang ◽  
Y. M. Gao ◽  
S. Q. Ma ◽  
Q. L. Zheng ◽  
...  

The mechanical and thermodynamic properties of intermetallic compounds in the Ni–Ti system are studied by first-principles calculations. All phases show anisotropic elasticity in different crystallographic directions, in which Ni3Ti and NiTi2 are approaching the isotropy structure. The elastic moduli and Vicker’s hardness of Ni–Ti system intermetallic compounds decrease in the following order: Ni3Ti [Formula: see text] B2_NiTi [Formula: see text] B19[Formula: see text]_NiTi [Formula: see text] NiTi2, and Ni3Ti shows the best mechanical properties. The intrinsic ductile nature of Ni–Ti compounds is confirmed by the obtained [Formula: see text]/[Formula: see text] ratio. The temperature dependence of linear thermal expansion coefficients (LTECs) of the compounds is estimated by the quasi-harmonic approximation (QHA) method. Ni3Ti shows the largest values among all Ni–Ti intermetallic compounds. At room temperature, the LTEC for Ni3Ti is 8.92 × 10[Formula: see text] K[Formula: see text], which falls in between the LTEC of zirconia toughened alumina (ZTA) (7.0–9.5 × 106 K[Formula: see text]) and iron matrix (9.2–16.9 × 106 K[Formula: see text]); i.e., the thermal matching of the ZTA/iron composite will be improved by introducing Ni3Ti intermetallic compound into their interface. Other thermodynamic properties such as sound velocity and Debye temperature are also obtained.

2006 ◽  
Vol 61 (5-6) ◽  
pp. 289-292 ◽  
Author(s):  
Hong-Gang Liu ◽  
Xiao-Xuan Wu ◽  
Wen-Chen Zheng ◽  
Lv He

The EPR zero-field splitting D (= b02 ) and its pressure and temperature dependence for trigonal Mn2+ centers in low and room temperature phases in [Zn(H2O)6](BF4)2 :Mn2+ crystal are studied by a high-order perturbation formula based on the dominant spin-orbit coupling mechanism. From the studies, the local trigonal distortion angles, the local angular compressibilities and the local angular thermal expansion coefficients for Mn2+ centers in both phases of the [Zn(H2O)6](BF4)2 crystal are estimated. The results are discussed


2017 ◽  
Vol 32 (S2) ◽  
pp. S38-S42
Author(s):  
Matthew R. Rowles ◽  
Cheng-Cheng Wang ◽  
Kongfa Chen ◽  
Na Li ◽  
Shuai He ◽  
...  

The crystal structure and thermal expansion of the perovskite samarium cobalt oxide (SmCoO3) have been determined over the temperature range 295–1245 K by Rietveld analysis of X-ray powder diffraction data. Polycrystalline samples were prepared by a sol–gel synthesis route followed by high-temperature calcination in air. SmCoO3 is orthorhombic (Pnma) at all temperatures and is isostructural with GdFeO3. The structure was refined as a distortion mode of a parent $ Pm{\bar 3}m $ structure. The thermal expansion was found to be non-linear and anisotropic, with maximum average linear thermal expansion coefficients of 34.0(3) × 10−6, 24.05(17) × 10−6, and 24.10(18) × 10−6 K−1 along the a-, b-, and c-axes, respectively, between 814 and 875 K.


2001 ◽  
Vol 34 (2) ◽  
pp. 208-209 ◽  
Author(s):  
Yasuhiko Takahashi ◽  
Masayoshi Fujimoto ◽  
Masashi Tsuchiko ◽  
Ken-Ichi Ohshima

The temperature dependences of the lattice constants of single crystals of the rare-earth hexaborides EuB6and GdB6were determined by analysing the low-temperature X-ray patterns. The lattice constant decreases monotonously with decreasing temperature. The linear thermal expansion coefficients for the two compounds were also obtained by analysing the temperature dependence of the lattice constants.


1999 ◽  
Vol 14 (1) ◽  
pp. 2-4 ◽  
Author(s):  
Rui-sheng Liang ◽  
Feng-chao Liu

A new method is used in measuring the linear thermal expansion coefficients in composite consisting of a substrate Gd3Ga2Ga3O12 (GGG) and its epitaxial layer Y3Fe2Fe3O12 (YIG) within the temperature range 13.88 °C–32.50 °C. The results show that the thermal expansion coefficient of GGG in composite is larger than that of the GGG in single crystal; the thermal expansion coefficient of thick film YIG is also larger than that of thin film. The results also show that the thermal expansion coefficient of a composite consisting of film and its substrate can be measured by using a new method.


1972 ◽  
Vol 16 ◽  
pp. 390-395 ◽  
Author(s):  
W. S. McCain ◽  
D. L. Albright

AbstractThe magnetic crystal disrortion of weakly ferromagnetic α-Fe2O3 was investigated by x-ray diffraction techniques. Here crystal distortion is taken as the temperature dependent changes of lattice constants and thermal expansion coefficients. Moreover, the oxygen position parameter and the carbon-oxygen distance of MnCO3 were determined.The lattice constants and thermal expansion coefficients of α-Fe2O3 were measured from room temperature down to 243°K. The crystal distortion, as measured by the changes in lattice constants, thermal expansion coefficients and axial ratio, was found to be highly anisotropic. The co hexagonal lattice constant was influenced very slightly by magnetic distortion; it changed only by 0.01 percent between room temperature and the Morin temperature of 254°K. On the other hand, the ao lattice constant changes by 0.11 percent between room temperature and the Morin temperature. The thermal expansion coefficients of the lattice constants showed a similar contrast. The co coefficient was found to be independent of temperature from room temperature down to the Morin temperature. However, in the same temperature range, the ao coefficient showed an anomalous increase with decreasing temperature. In addition, the ao coefficient showed an infinite discontinuity at the Morin temperature.The change in the axial ratio with temperature suggests that the net weak ferromagnetic moment of α-Fe2O3 reaches a maximum at 275°K.The oxygen position parameter, x, in MnCO3 as determined from two reflections has a value of 0.2702 ± 0.001. The carbon-oxygen distance as calculated from the lattice constants and the oxygen position parameter is 1.29 ±0.002 Å. This value is another confirmation of the Pauling theory of the resonating carbonate structure.


Author(s):  
Byoung Hee You ◽  
Daniel S. Park ◽  
Ping-Chuan Chen ◽  
Wilfredo M. Caceres ◽  
Dimitris E. Nikitopoulos ◽  
...  

In molding, geometric variation of molded parts is inevitable since the parts have a thermal history, including expansion and shrinkage, during the molding process. Shrinkage induces variation between the designed dimensions and locations of features on molded parts while the parts are cooled. Characterization of the variation is necessary to ensure dimensional and location integrity. Hot embossing and injection molding were performed in order to assess variation. Measurements were made using a Measurescope (MM-22, Nikon Corp., Kawasaki, Japan). The measured locations and dimensions were compared to estimates obtained using a simple model based on the linear thermal expansion coefficients (CTE) of the molded materials. The measured and the estimated shrinkage from hot embossing were incorporated in the fabrication of microtiter plate-based polymer microfluidic platforms.


Sign in / Sign up

Export Citation Format

Share Document