Improvement in the performance of graphene nanoribbon p-i-n tunneling field effect transistors by applying lightly doped profile on drain region

2017 ◽  
Vol 31 (31) ◽  
pp. 1750248 ◽  
Author(s):  
Ali Naderi

In this paper, an efficient structure with lightly doped drain region is proposed for p-i-n graphene nanoribbon field effect transistors (LD-PIN-GNRFET). Self-consistent solution of Poisson and Schrödinger equation within Nonequilibrium Green’s function (NEGF) formalism has been employed to simulate the quantum transport of the devices. In proposed structure, source region is doped by constant doping density, channel is an intrinsic GNR, and drain region contains two parts with lightly and heavily doped doping distributions. The important challenge in tunneling devices is obtaining higher current ratio. Our simulations demonstrate that LD-PIN-GNRFET is a steep slope device which not only reduces the leakage current and current ratio but also enhances delay, power delay product, and cutoff frequency in comparison with conventional PIN GNRFETs with uniform distribution of impurity and with linear doping profile in drain region. Also, the device is able to operate in higher drain–source voltages due to the effectively reduced electric field at drain side. Briefly, the proposed structure can be considered as a more reliable device for low standby-power logic applications operating at higher voltages and upper cutoff frequencies.

Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 574 ◽  
Author(s):  
Tao Han ◽  
Hongxia Liu ◽  
Shupeng Chen ◽  
Shulong Wang ◽  
Wei Li

In this paper, a novel doping-less tunneling field-effect transistor with Si0.6Ge0.4 heterojunction (H-DLTFET) is proposed using TCAD simulation. Unlike conventional doping-less tunneling field-effect transistors (DLTFETs), in H-DLTFETs, germanium and Si0.6Ge0.4 are used as source and channel materials, respectively, to provide higher carrier mobility and smaller tunneling barrier width. The energy band and charge carrier tunneling efficiency of the tunneling junction become steeper and higher as a result of the Si0.6Ge0.4 heterojunction. In addition, the effects of the source work function, gate oxide dielectric thickness, and germanium content on the performance of the H-DLTFET are analyzed systematically, and the below optimal device parameters are obtained. The simulation results show that the performance parameters of the H-DLTFET, such as the on-state current, on/off current ratio, output current, subthreshold swing, total gate capacitance, cutoff frequency, and gain bandwidth (GBW) product when Vd = 1 V and Vg = 2 V, are better than those of conventional silicon-based DLTFETs. Therefore, the H-DLTFET has better potential for use in ultra-low power devices.


2014 ◽  
Vol 28 (07) ◽  
pp. 1450048 ◽  
Author(s):  
ZAHRA JAMALABADI ◽  
PARVIZ KESHAVARZI ◽  
ALI NADERI

A novel carbon nanotube field-effect transistor with stepwise doping profile channel (SDC-CNTFET) is introduced for short-channel effects (SCEs) improvement. In SDC-CNTFET, the channel is divided into five sections of equal length. Impurity concentration was reduced from 0.8 nm-1 to zero from the source side to the drain side of the channel, with stepwise profile. The devices have been simulated by the self-consistent solution of two-dimensional (2D) Poisson–Schrödinger equations, within the nonequilibrium Green's function (NEGF) formalism. We demonstrate that the proposed structure for CNTFETs shows considerable improvement in device performance focusing on leakage current and ON–OFF current ratio. In addition, the investigation of SCEs for the proposed structure shows the improved drain-induced barrier lowering (DIBL) and subthreshold swing (SS). Moreover, we will prove that the proposed structure has acceptable performance at different values of channel impurity concentration in terms of delay and power-delay product (PDP). All these investigations introduce SDC-CNTFET as a more reliable device structure in short-channel regime.


2014 ◽  
Vol 5 ◽  
pp. 1569-1574 ◽  
Author(s):  
Majid Sanaeepur ◽  
Arash Yazdanpanah Goharrizi ◽  
Mohammad Javad Sharifi

The performance of field effect transistors comprised of a zigzag graphene nanoribbon that is symmetrically doped with boron nitride (BN) as a channel material, is numerically studied for the first time. The device merit for digital applications is investigated in terms of the on-, the off- and the on/off-current ratio. Due to the strong effect of the substrate roughness on the performance of graphene devices, three common substrate materials (SiO2, BN and mica) are examined. Rough surfaces are generated by means of a Gaussian auto-correlation function. Electronic transport simulations are performed in the framework of tight-binding Hamiltonian and non-equilibrium Green's function (NEGF) formalisms. The results show that with an appropriate selection of the substrate material, the proposed devices can meet the on/off-current ratio required for future digital electronics.


2002 ◽  
Vol 743 ◽  
Author(s):  
Z. Y. Fan ◽  
J. Li ◽  
J. Y. Lin ◽  
H. X. Jiang ◽  
Y. Liu ◽  
...  

ABSTRACTThe fabrication and characterization of AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOSHFETs) with the δ-doped barrier are reported. The incorporation of the SiO2 insulated-gate and the δ-doped barrier into HFET structures reduces the gate leakage and improves the 2D channel carrier mobility. The device has a high drain-current-driving and gate-control capabilities as well as a very high gate-drain breakdown voltage of 200 V, a cutoff frequency of 15 GHz and a maximum frequency of oscillation of 34 GHz for a gate length of 1 μm. These characteristics indicate a great potential of this structure for high-power-microwave applications.


2016 ◽  
Vol 6 (3) ◽  
pp. 265-270 ◽  
Author(s):  
Mahdiar Ghadiry ◽  
Harith Ahmad ◽  
Chong Wu Yi ◽  
Asrulnizam Abd Manaf

Plasmonics ◽  
2015 ◽  
Vol 11 (2) ◽  
pp. 573-577 ◽  
Author(s):  
Mahdiar Ghadiry ◽  
Harith Ahmad ◽  
Alieh Hivechi ◽  
Fatemeh Tavakoli ◽  
Asrulnizam Abd Manaf

Sign in / Sign up

Export Citation Format

Share Document