drain region
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 14)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 21 (8) ◽  
pp. 4258-4267
Author(s):  
Hee Dae An ◽  
Min Su Cho ◽  
Hye Jin Mun ◽  
Sang Ho Lee ◽  
Jin Park ◽  
...  

In this paper, we present a capacitorless one transistor dynamic random access memory (1T-DRAM) based on a polycrystalline silicon (poly-Si) double gate MOSFET with grain boundaries (GBs). Several studies have been conducted to implement 1T-DRAM using poly-Si. This is because poly-Si has the advantage of low-cost fabrication and can be stacked. However, poly-Si has GBs, which can adversely affect semiconductor device. So far, related studies on poly-Si-based 1T-DRAM have only focused on GBs present in the channel domain. Hence, in this study, we analyzed the transfer and memory characteristics when a GB is present in the source and drain regions. As a result, we found that in the center of the depletion region in the source and channel junction, where the effect of GB was most significant, sensing margins decreased the most from 0.88 to 0.29 μA/μm, and retention time (RT) decreased from 85 ms to 47 μs. In addition, we found that at the center of the depletion region in the drain and channel junction, where the effect of GBs was most significant in the drain region, RT decreased the most from 85 ms to 52 μs.


2021 ◽  
Author(s):  
Amit Kumar ◽  
Anil Kumar Rajput ◽  
Manisha Pattanaik ◽  
Pankaj Srivast

Abstract In the research paper, the semi-analytical modelling is done for low drain-induced barrier lowering (DIBL) dual-metal gate all around FET (DM GAAFET). Vacuum and silicon nitride are considered in the act of the gate oxide material near drain region for dual-metal vacuum oxide gate all around FET (DM-VO GAAFET) and dual-metal nitride oxide gate all around FET (DM-NO GAAFET) respectively, in which surface potential, threshold voltage, and DIBL are modelled for both the devices. The proposed models are validated by comparing DM-NO GAAFET with DM-VO GAAFET. DM-NO GAAFET shows the better device performance than DM-VO GAAFET as the threshold voltage increased by 10% and DIBL decreased by 50% in simulated as well as analytical results. The obtained results are having very close agreement with simulated results for both the GAAFETs.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 654
Author(s):  
Eunjung Ko ◽  
Juhee Lee ◽  
Seung Wook Ryu ◽  
Hyunsu Shin ◽  
Seran Park ◽  
...  

Silicon german ium (SiGe) has attracted significant attention for applications in the source/drain (S/D) regions of p-type metal-oxide-semiconductor field-effect transistors (p-MOSFETs). However, in SiGe, as the Ge concentration increases, high-density defects are generated, which limit its applications. Therefore, several techniques have been developed to minimize defects; however, these techniques require relatively thick epitaxial layers and are not suitable for gate-all-around FETs. This study examined the effect of Ge concentration on the embedded SiGe source/drain region of a logic p-MOSFET. The strain was calculated through nano-beam diffraction and predictions through a simulation were compared to understand the effects of stress relaxation on the change in strain applied to the Si channel. When the device performance was evaluated, the drain saturation current was approximately 710 µA/µm at an off current of 100 nA/µm with a drain voltage of 1 V, indicating that the current was enhanced by 58% when the Ge concentration was optimized.


2021 ◽  
Vol 151 ◽  
pp. 106810
Author(s):  
Yulong Wang ◽  
Baoxing Duan ◽  
Licheng Sun ◽  
Xin Yang ◽  
Yunjia Huang ◽  
...  

2020 ◽  
Vol 15 (2) ◽  
pp. 1-5
Author(s):  
Fernando José Costa ◽  
Renan Trevisoli Doria ◽  
Rodrigo Trevisoli Doria

The main goal of this work is to perform a first-time analysis of the thermal cross-coupling in a system composed by some devices in an integration node degree composed by advanced UTBB SOI MOSFETs through numerical simulations, validated with experimental data from the literature. In this analysis, it could be observed that devices located on the channel length direction provoke a reduced thermal coupling and devices with their drain region next to each other suffer of an increased thermal coupling due to the lumped thermal energy. It also could be observed a degradation in some electrical parameters and in the thermal properties of a device under the influence of surrounded devices biased.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 730 ◽  
Author(s):  
Shen-Li Chen ◽  
Pei-Lin Wu ◽  
Yu-Jen Chen

The weak ESD-immunity problem has been deeply persecuted in ultra high-voltage (UHV) metal-oxide-semiconductor field-effect transistors (MOSFETs) and urgently needs to be solved. In this paper, a UHV 300 V circular n-channel (n) lateral diffused MOSFET (nLDMOS) is taken as the benchmarked reference device for the electrostatic discharge (ESD) capability improvement. However, a super-junction (SJ) structure in the drain region will cause extra depletion zones in the long drain region and reduce the peak value of the channel electric field. Therefore, it may directly increase the resistance of the device to ESD. Then, in this reformation project for UHV nLDMOSs to ESD, two strengthening methods were used. Firstly, the SJ area ratio changed by the symmetric eight-zone elliptical-cylinder length (X) variance (i.e., X = 5, 10, 15 and 20 μm) is added into the drift region of drain side to explore the influence on ESD reliability. From the experimental results, it could be found that the breakdown voltages (VBK) were changed slightly after adding this SJ structure. The VBK values are filled between 391 and 393.5 V. Initially, the original reference sample is 393 V; the VBK changing does not exceed 0.51%, which means that these components can be regarded as little changing in the conduction characteristic after adding these SJ structures under the normal operating conditions. In addition, in the ESD transient high-voltage bombardment situation, the human-body model (HBM) capability of the original reference device is 2500 V. Additionally, as SJs with the length X high-voltage P-type well (HVPW) are inserted into the drain-side drift region, the HBM robustness of these UHV nLDMOSs increases with the length X of the HVPW. When the length X (HVPW) is 20 μm, the HBM value can be upgraded to a maximum value of 5500 V, the ESD capability is increased by 120%. A linear relationship between the HBM immunity level and area ratio of SJs in the drains side in this work can be extracted. The second part revealed that, in the symmetric four-zone elliptical cylinder SJ modulation, the HBM robustness is generally promoted with the increase of HVPW SJ numbers (the highest HBM value (4500 V) of the M5 device improved by 80% as compared with the reference device under test (DUT)). Therefore, from this work, we can conclude that the addition of symmetric elliptical-cylinder SJ structures into the drain-side drift region of a UHV nLDMOS is a good strategy for improving the ESD immunity.


2019 ◽  
Vol 10 (1) ◽  
pp. 126 ◽  
Author(s):  
Haiwu Xie ◽  
Hongxia Liu ◽  
Shulong Wang ◽  
Shupeng Chen ◽  
Tao Han ◽  
...  

In this paper, a dual metallic material gate heterostructure junctionless tunnel field-effect transistor (DMMG-HJLTFET) is proposed and investigated. We use the Si/SiGe heterostructure at the source/channel interface to improve the band to band tunneling (BTBT) rate, and introduce a sandwich stack (GaAs/Si/GaAs) at the drain region to suppress the OFF-state current and ambiplolar current. Simultaneously, to further decrease ambipolar current, the gate electrode is divided into three parts namely auxiliary gate (M1), control gate (M2), and tunnel gate (M3) with workfunctions ΦM1, ΦM2 and ΦM3, respectively, where ΦM1 = ΦM3 < ΦM2. Simulation results indicate that DMMG-HJLTFET provides superior performance in terms of logic and analog/RF as compared with other possible combinations, the ON-state current of the DMMG-HJLTFET increases up to 9.04 × 1 0 − 6 A/μm, and the maximum gm (which determine the analog performance of devices) of DMMG-HJLTFET is 1.11 × 1 0 − 5 S/μm at 1.0V drain-to-source voltage (Vds). Meanwhile, RF performance of devices depends on the cut-off frequency (fT) and gain bandwidth (GBW), and DMMG-HJLTFET could achieve a maximum fT of 5.84 GHz, and a maximum GBW of 0.39 GHz, respectively.


Sign in / Sign up

Export Citation Format

Share Document