InN/GaN quantum dot superlattices: Charge-carrier states and surface electronic structure

2018 ◽  
Vol 32 (06) ◽  
pp. 1850060
Author(s):  
F. Kanouni ◽  
A. Brezini ◽  
M. Djenane ◽  
Q. Zou

We have theoretically investigated the electron energy spectra and surface states energy in the three dimensionally ordered quantum dot superlattices (QDSLs) made of InN and GaN semiconductors. The QDSL is assumed in this model to be a matrix of GaN containing cubic dots of InN of the same size and uniformly distributed. For the miniband’s structure calculation, the resolution of the effective mass Schrödinger equation is done by decoupling it in the three directions within the framework of Kronig–Penney model. We found that the electrons minibands in infinite ODSLs are clearly different from those in the conventional quantum-well superlattices. The electrons localization and charge-carrier states are very dependent on the quasicrystallographic directions, the size and the shape of the dots which play a role of the artificial atoms in such QD supracrystal. The energy spectrum of the electron states localized at the surface of InN/GaN QDSL is represented by Kronig–Penney like-model, calculated via direct matching procedure. The calculation results show that the substrate breaks symmetrical shape of QDSL on which some localized electronic surface states can be produced in minigap regions. Furthermore, we have noticed that the surface states degeneracy is achieved in like very thin bands located in the minigaps, identified by different quantum numbers n[Formula: see text], n[Formula: see text], n[Formula: see text]. Moreover, the surface energy bands split due to the reduction of the symmetry of the QDSL in z-direction.

2020 ◽  
Vol 8 (42) ◽  
pp. 14834-14844
Author(s):  
Piotr Piatkowski ◽  
Sofia Masi ◽  
Pavel Galar ◽  
Mario Gutiérrez ◽  
Thi Tuyen Ngo ◽  
...  

Charge-carrier transfer (CT) from the perovskite host to PbS QDs were studied using fs-transient absorption and THz techniques. The CT rate constants increase with the size of QDs due to a change in the position of valence and conduction bands in PbS QDs.


2020 ◽  
Author(s):  
Matthias Grotevent ◽  
Claudio U. Hail ◽  
Sergii Yakunin ◽  
Dominik Bachmann ◽  
Gökhan Kara ◽  
...  

Colloidal PbS quantum dot (QD)/graphene hybrid photodetectors are emerging QD technologies for affordable infra-red light detectors. By interfacing the QDs with graphene, the photosignal of these detectors is amplified, leading to high responsivity values. While these detectors have been mainly operated at room temperature, low-temperature operation is required for extending their spectral sensitivity beyond a wavelength of 3 μm. Here, we unveil the temperature-dependent response of PbS QD/graphene photodetectors by performing steady-state and time-dependent measurements over a large temperature range of 80–300 K. We find that the temperature dependence of photo-induced charge carrier transfer from the QD layer to graphene is (i) not impeded by freeze-out of the (Schottky-like) potential barrier at low temperatures, (ii) tremendously sensitive to QD surface states (surface oxidation), and (iii) minimally affected by the ligand exposure time and QD layer thickness. Moreover, the specific detectivity of our detectors increases with cooling, with a maximum measured specific detectivity of at least 10<sup>10</sup> Jones at a wavelength of 1280 nm and temperature of 80 K, which is an order of magnitude larger compared to the corresponding room temperature value. The temperature- and gate-voltage-dependent characterization presented here constitute an important step in expanding our knowledge of charge transfer at interfaces of low dimensional materials and towards the realization of next-generation optoelectronic devices.<br>


2022 ◽  
Author(s):  
Yinming Shao ◽  
Aaron Sternbach ◽  
Brian Kim ◽  
Andrey Rikhter ◽  
Xinyi Xu ◽  
...  

Abstract Metals are canonical plasmonic media at infrared and optical wavelengths allowing one to guide and manipulate light at sub-diffractional length scales. A special form of optical waveguiding is offered by highly anisotropic crystals revealing different signs of the dielectric function along orthogonal directions. These latter types of media are classified as hyperbolic and many crystalline insulators, semiconductors and artificial metal-based metamaterials belong to that class. Layered anisotropic metals are also anticipated to support hyperbolic waveguiding. Yet this behavior remains elusive primarily because interband processes introduce extreme losses and arrest light propagation. Here, we report on the observation of propagating hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe. The unique electronic structure with touching energy bands at nodal points/lines suppresses losses and enables a hyperbolic regime at the telecommunications frequencies. The observed waveguiding in metallic ZrSiSe is a product of polaritonic hybridization between near-infrared light and long-lived nodal-line plasmons. By mapping the energy-momentum dispersion of the nodal-line hyperbolic modes in ZrSiSe we inquired into the role of additional screening associated with the surface states.


2020 ◽  
Author(s):  
Matthias Grotevent ◽  
Claudio U. Hail ◽  
Sergii Yakunin ◽  
Dominik Bachmann ◽  
Gökhan Kara ◽  
...  

Colloidal PbS quantum dot (QD)/graphene hybrid photodetectors are emerging QD technologies for affordable infra-red light detectors. By interfacing the QDs with graphene, the photosignal of these detectors is amplified, leading to high responsivity values. While these detectors have been mainly operated at room temperature, low-temperature operation is required for extending their spectral sensitivity beyond a wavelength of 3 μm. Here, we unveil the temperature-dependent response of PbS QD/graphene photodetectors by performing steady-state and time-dependent measurements over a large temperature range of 80–300 K. We find that the temperature dependence of photo-induced charge carrier transfer from the QD layer to graphene is (i) not impeded by freeze-out of the (Schottky-like) potential barrier at low temperatures, (ii) tremendously sensitive to QD surface states (surface oxidation), and (iii) minimally affected by the ligand exposure time and QD layer thickness. Moreover, the specific detectivity of our detectors increases with cooling, with a maximum measured specific detectivity of at least 10<sup>10</sup> Jones at a wavelength of 1280 nm and temperature of 80 K, which is an order of magnitude larger compared to the corresponding room temperature value. The temperature- and gate-voltage-dependent characterization presented here constitute an important step in expanding our knowledge of charge transfer at interfaces of low dimensional materials and towards the realization of next-generation optoelectronic devices.<br>


2017 ◽  
Vol 9 (15) ◽  
pp. 13269-13277 ◽  
Author(s):  
Y. Cheng ◽  
M. D. C. Whitaker ◽  
R. Makkia ◽  
S. Cocklin ◽  
V. R. Whiteside ◽  
...  

2021 ◽  
Vol 129 (2) ◽  
pp. 025301
Author(s):  
Vitaly S. Proshchenko ◽  
Manoj Settipalli ◽  
Artem K. Pimachev ◽  
Sanghamitra Neogi

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1168
Author(s):  
Elena Belenkaya ◽  
Ivan Pensionerov

On 14 January 2008, the MESSENGER spacecraft, during its first flyby around Mercury, recorded the magnetic field structure, which was later called the “double magnetopause”. The role of sodium ions penetrating into the Hermean magnetosphere from the magnetosheath in generation of this structure has been discussed since then. The violation of the symmetry of the plasma parameters at the magnetopause is the cause of the magnetizing current generation. Here, we consider whether the change in the density of sodium ions on both sides of the Hermean magnetopause could be the cause of a wide diamagnetic current in the magnetosphere at its dawn-side boundary observed during the first MESSENGER flyby. In the present paper, we propose an analytical approach that made it possible to determine the magnetosheath Na+ density excess providing the best agreement between the calculation results and the observed magnetic field in the double magnetopause.


2019 ◽  
Vol 10 (9) ◽  
pp. 2643-2652 ◽  
Author(s):  
Shababa Selim ◽  
Laia Francàs ◽  
Miguel García-Tecedor ◽  
Sacha Corby ◽  
Chris Blackman ◽  
...  

Unveiling the role of applied bias on the charge carrier dynamics in the WO3/BiVO4 junction during water oxidation.


Sign in / Sign up

Export Citation Format

Share Document