High optical quality long ultrafine ZnO nanowires by low-temperature oxidation of sputtered nanostructured Zn templates

2018 ◽  
Vol 32 (27) ◽  
pp. 1850297 ◽  
Author(s):  
F. Abdolrezapour ◽  
M. Moradi

In this study, we show that by applying appropriate deposition conditions, Zn nanostructured templates for the growth of zinc oxide (ZnO) nanowires can be fabricated, from which ultrafine high optical quality nanowires can be grown by means of post-deposition low-temperature oxidation. By identifying and optimizing the appropriate parameters, we successfully fabricated long ultrafine ZnO nanowires up to 30 microns in length and 50 nm in diameter. Our report contradicts the commonly held paradigm that sputter deposition can only be used to fabricate thin films with no significant nanostructure morphology and provides a low cost, high throughput method of fabricating different ZnO nanostructures. The studies of photoluminescence (PL) of the nanowires showed their high optical quality with band edge dominated emission with small defect-related input.

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 641
Author(s):  
Lukasz Wolski ◽  
Grzegorz Nowaczyk ◽  
Stefan Jurga ◽  
Maria Ziolek

The aim of the study was to establish the influence of a co-precipitation agent (i.e., NaOH–immediate precipitation; hexamethylenetetramine/urea–gradual precipitation and growth of nanostructures) on the properties and catalytic activity of as-synthesized Au-CeO2 nanocomposites. All catalysts were fully characterized with the use of XRD, nitrogen physisorption, ICP-OES, SEM, HR-TEM, UV-vis, XPS, and tested in low-temperature oxidation of benzyl alcohol as a model oxidation reaction. The results obtained in this study indicated that the type of co-precipitation agent has a significant impact on the growth of gold species. Immediate co-precipitation of Au-CeO2 nanostructures with the use of NaOH allowed obtainment of considerably smaller and more homogeneous in size gold nanoparticles than those formed by gradual co-precipitation and growth of Au-CeO2 nanostructures in the presence of hexamethylenetetramine or urea. In the catalytic tests, it was established that the key factor promoting high activity in low-temperature oxidation of benzyl alcohol was size of gold nanoparticles. The highest conversion of the alcohol was observed for the catalyst containing the smallest Au particle size (i.e., Au-CeO2 nanocomposite prepared with the use of NaOH as a co-precipitation agent).


2007 ◽  
Vol 42 (12) ◽  
pp. 4684-4691 ◽  
Author(s):  
Mari Honkanen ◽  
Minnamari Vippola ◽  
Toivo Lepistö

2017 ◽  
Vol 36 (1) ◽  
pp. 365-372 ◽  
Author(s):  
Anne Rodriguez ◽  
Olivier Herbinet ◽  
Frédérique Battin-Leclerc

Sign in / Sign up

Export Citation Format

Share Document