THE ROLE OF SUSPENSION STRUCTURE IN THE DYNAMIC RESPONSE OF ELECTRORHEOLOGICAL SUSPENSIONS

1994 ◽  
Vol 08 (20n21) ◽  
pp. 2789-2809 ◽  
Author(s):  
M. PARTHASARATHY ◽  
K. H. AHN ◽  
B. M. BELONGIA ◽  
D. J. KLINGENBERG

The dynamic response of electrorheological (ER) suspensions has received little attention relative to the effort devoted to the study of the steady shear response. We report on simulation and experimental investigations of the dynamic oscillatory response of ER suspensions, in particular focusing on the relationship between suspension structure and the rheological response. We consider the response of monodisperse and polydisperse suspensions under linear deformation, as well as the response in the nonlinear regime. Dimensional analysis of the equations of motion predict that the linear rheological response obeys a time-field strength superposition principle, which is confirmed by experiment. The response is found to exhibit a sharp dispersion that is only broadened slightly by polydispersity. Nonlinear deformation is found to significantly broaden the observed dispersion.

1999 ◽  
Vol 123 (4) ◽  
pp. 542-548 ◽  
Author(s):  
Jen-San Chen ◽  
Kwin-Lin Chen

Previous researches on the dynamic response of a flexible connecting rod can be categorized by the ways the axial load in the rod is being formulated. The axial load may be assumed to be (1) dependent only on time and can be obtained by treating the rod as rigid, (2) related to the transverse displacement by integrating the axial equilibrium equation, and (3) proportional to linear strain. This paper examines the validity of these formulations by first deriving the equations of motion assuming the axial load to be proportional to the Lagrangian strain. In order for the dimensionless displacements to be in the order of O(1), different nondimensionalization schemes have to be adopted for low and high crank speeds. The slenderness ratio of the connecting rod arises naturally as a small parameter with which the order of magnitude of each term in the equations of motion, and the implication of these simplified formulations can be examined. It is found that the formulations in previous researches give satisfactory results only when the crank speed is low. On the other hand when the crank speed is comparable to the first bending natural frequency of the connecting rod, these simplified formulations overestimate considerably the dynamic response because terms of significant order of magnitude are removed inadequately.


Author(s):  
Yijun Wang ◽  
Alex van Deyzen ◽  
Benno Beimers

In the field of port design there is a need for a reliable but time-efficient method to assess the behavior of moored ships in order to determine if further detailed analysis of the behavior is required. The response of moored ships induced by gusting wind and/or waves is dynamic. Excessive motion response may cause interruption of the (un)loading operation. High line tension may cause lines to snap, introducing dangerous situations. A (detailed) Dynamic Mooring Analysis (DMA), however, is often a time-consuming and expensive exercise, especially when responses in many different environmental conditions need to be assessed. Royal HaskoningDHV has developed a time-efficient computational tool in-house to assess the wave (sea or swell) induced dynamic response of ships moored to exposed berths. The mooring line characteristics are linearized and the equations of motion are solved in the frequency domain with both the 1st and 2nd wave forces taken into account. This tool has been termed Less=Moor. The accuracy and reliability of the computational tool has been illustrated by comparing motions and mooring line forces to results obtained with software that solves the nonlinear equations of motion in the time domain (aNySIM). The calculated response of a Floating Storage and Regasification Unit (FSRU) moored to dolphins located offshore has been presented. The results show a good comparison. The computational tool can therefore be used to indicate whether the wave induced response of ships moored at exposed berths proves to be critical. The next step is to make this tool suitable to assess the dynamic response of moored ships with large wind areas, e.g. container ships, cruise vessels, RoRo or car carriers, to gusting wind. In addition, assessment of ship responses in a complicated wave field (e.g. with reflected infra-gravity waves) also requires more research effort.


2016 ◽  
Vol 842 ◽  
pp. 251-258 ◽  
Author(s):  
Muhammad Rafi Hadytama ◽  
Rianto A. Sasongko

This paper presents the flight dynamics simulation and analysis of a tilt-rotor vertical takeoff and landing (VTOL) aircraft on transition phase, that is conversion from vertical or hover to horizontal or level flight and vice versa. The model of the aircraft is derived from simplified equations of motion comprising the forces and moments working on the aircraft in the airplane's longitudinal plane of motion. This study focuses on the problem of the airplane's dynamic response during conversion phase, which gives an understanding about the flight characteristics of the vehicle. The understanding about the flight dynamics characteristics is important for the control system design phase. Some simulation results are given to provide better visualization about the behaviour of the tilt-rotor. The simulation results show that both transition phases are quite stable, although an improved stability can give better manoeuver and attitude handling. Improvement on the simulation model is also required to provide more accurate and realistic dynamic response of the vehicle.


Joint Rail ◽  
2004 ◽  
Author(s):  
Mohammad Durali ◽  
Mohammad Mehdi Jalili Bahabadi

In this article a train model is developed for studying train derailment in passing through bends. The model is three dimensional, nonlinear, and considers 43 degrees of freedom for each wagon. All nonlinear characteristics of suspension elements as well as flexibilities of wagon body and bogie frame, and the effect of coupler forces are included in the model. The equations of motion for the train are solved numerically for different train conditions. A neural network was constructed as an element in solution loop for determination of wheel-rail contact geometry. Derailment factor was calculated for each case. The results are presented and show the major role of coupler forces on possible train derailment.


Author(s):  
Chinsu Mereena Joy ◽  
Anitha Joseph ◽  
Lalu Mangal

Demand for renewable energy sources is rapidly increasing since they are able to replace depleting fossil fuels and their capacity to act as a carbon neutral energy source. A substantial amount of such clean, renewable and reliable energy potential exists in offshore winds. The major engineering challenge in establishing an offshore wind energy facility is the design of a reliable and financially viable offshore support for the wind turbine tower. An economically feasible support for an offshore wind turbine is a compliant platform since it moves with wave forces and offer less resistance to them. Amongst the several compliant type offshore structures, articulated type is an innovative one. It is flexibly linked to the seafloor and can move along with the waves and restoring is achieved by large buoyancy force. This study focuses on the experimental investigations on the dynamic response of a three-legged articulated structure supporting a 5MW wind turbine. The experimental investigations are done on a 1: 60 scaled model in a 4m wide wave flume at the Department of Ocean Engineering, Indian Institute of Technology, Madras. The tests were conducted for regular waves of various wave periods and wave heights and for various orientations of the platform. The dynamic responses are presented in the form of Response Amplitude Operators (RAO). The study results revealed that the proposed articulated structure is technically feasible in supporting an offshore wind turbine because the natural frequencies are away from ocean wave frequencies and the RAOs obtained are relatively small.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 288
Author(s):  
Julie Massart ◽  
Karima Begriche ◽  
Jessica H. Hartman ◽  
Bernard Fromenty

Cytochrome P450 2E1 (CYP2E1) is pivotal in hepatotoxicity induced by alcohol abuse and different xenobiotics. In this setting, CYP2E1 generates reactive metabolites inducing oxidative stress, mitochondrial dysfunction and cell death. In addition, this enzyme appears to play a role in the progression of obesity-related fatty liver to nonalcoholic steatohepatitis. Indeed, increased CYP2E1 activity in nonalcoholic fatty liver disease (NAFLD) is deemed to induce reactive oxygen species overproduction, which in turn triggers oxidative stress, necroinflammation and fibrosis. In 1997, Avadhani’s group reported for the first time the presence of CYP2E1 in rat liver mitochondria, and subsequent investigations by other groups confirmed that mitochondrial CYP2E1 (mtCYP2E1) could be found in different experimental models. In this review, we first recall the main features of CYP2E1 including its role in the biotransformation of endogenous and exogenous molecules, the regulation of its expression and activity and its involvement in different liver diseases. Then, we present the current knowledge on the physiological role of mtCYP2E1, its contribution to xenobiotic biotransformation as well as the mechanism and regulation of CYP2E1 targeting to mitochondria. Finally, we discuss experimental investigations suggesting that mtCYP2E1 could have a role in alcohol-associated liver disease, xenobiotic-induced hepatotoxicity and NAFLD.


2017 ◽  
Vol 26 (3) ◽  
pp. 255-262
Author(s):  
AHMET DASDEMIR ◽  

Within the scope of the piecewise homogeneous body model with utilizing of the three dimensional linearized theory of elastic waves in initially stressed bodies the dynamical stress field problem in a bi-layered plate-strip with initial stress under the action of an arbitrary inclined timeharmonic force resting on a rigid foundation is investigated. The concrete materials such as a pair of Aluminum and Steel are selected. It is assumed that there exists a complete contact interaction between the layers. The mathematical modeling of the problem under consideration is carved out, and the governing system of the partial differential equations of motion is approximately solved by employing Finite Element Method. The numerical results related to the influence of certain parameters on the dynamic response of the plate-strip are presented.


2021 ◽  
Author(s):  
Mubashira Shakeel ◽  
M. Javed Iqbal ◽  
Mammor Iftikhar ◽  
Umer Farooq ◽  
Muhammad Tauseef Qureshi ◽  
...  

Abstract The current study is concerned with the first principle investigations of the oxygenated MoS2 to explore the electronic and optical properties. We consider various oxygen concentrations (MoS2, MoS1.75O0.25, MoS1.5O0.5, MoSO) for the prediction of its impact on parameters using PBE-GGA approximation. A noticeable change in parameters has been observed in the visible regime with the introduction of oxygen content in the MoS2 structure. The results of the electronic properties suggest a string role of Mo d-states, S p-states, and O p-states which, however, show variations for various O concentrations near the Fermi level. In comparison to the absorption trend of pure MoS2, the optical absorption spectra show a blue shift in the visible range. The effect of oxygen can also be seen in the experimentally prepared MoS2 thin films as the variation of optical behavior can be seen. Refractive index decreases from ~2.5 to ~2. Similarly, absorption graphs show a lack of absorption phenomenon as the oxygen content increases. The role of oxygen brings appreciable changes in the optical parameters over the different energy ranges.


Sign in / Sign up

Export Citation Format

Share Document