ACCELERATING THE REVIVAL OF A TRAPPED-ION SYSTEM

2008 ◽  
Vol 22 (07) ◽  
pp. 467-474 ◽  
Author(s):  
L. SHE ◽  
J. M. LI ◽  
K. L. GAO

We propose a method to accelerate the revival of ion Rabi oscillation in a trapped ion system. Suitable manipulation of the frequency of the driven laser field permits us to switch from Jaynes–Cummings to off-resonant interaction. The combination of Jaynes–Cummings model and the off-resonant model induces some interesting characteristics of the ion-trap system, particularly the accelerated revival of the population of trapped ions. The amplitude of this revival is sensitive to the change of the laser frequency.

2008 ◽  
Vol 8 (6&7) ◽  
pp. 501-578
Author(s):  
D. Hucul ◽  
M. Yeo ◽  
W.K. Hensinger ◽  
J. Rabchuk ◽  
S. Olmschenk ◽  
...  

Trapped atomic ions have become one of the most promising architectures for a quantum computer, and current effort is now devoted to the transport of trapped ions through complex segmented ion trap structures in order to scale up to much larger numbers of trapped ion qubits. This paper covers several important issues relevant to ion transport in any type of complex multidimensional rf (Paul) ion trap array. We develop a general theoretical framework for the application of time-dependent electric fields to shuttle laser-cooled ions along any desired trajectory, and describe a method for determining the effect of arbitrary shuttling schedules on the quantum state of trapped ion motion. In addition to the general case of linear shuttling over short distances, we introduce issues particular to the shuttling through multidimensional junctions, which are required for the arbitrary control of the positions of large arrays of trapped ions. This includes the transport of ions around a corner, through a cross or T junction, and the swapping of positions of multiple ions in a laser-cooled crystal. Where possible, we make connections to recent experimental results in a multidimensional T junction trap, where arbitrary 2-dimensional transport was realized.


2009 ◽  
Vol 87 (10) ◽  
pp. 1425-1435 ◽  
Author(s):  
Taunia L. L. Closson ◽  
Marc R. Roussel

When the anisotropy of a harmonic ion trap is increased, the ions eventually collapse into a two-dimensional structure consisting of concentric shells of ions. This collapse generally behaves like a second-order phase transition. A graph of the critical value of the anisotropy parameter vs. the number of ions displays substructure closely related to the inner-shell configurations of the clusters. The critical exponent for the order parameter of this phase transition (maximum extent in the z direction) was found computationally to have the value β = 1/2. A second critical exponent related to displacements perpendicular to the z axis was found to have the value δ = 1. Using these estimates of the critical exponents, we derive an equation that relates the amplitudes of the displacements of the ions parallel to the x–y plane to the amplitudes along the z axis during the flattening process.


Science ◽  
2019 ◽  
Vol 364 (6443) ◽  
pp. 875-878 ◽  
Author(s):  
Yong Wan ◽  
Daniel Kienzler ◽  
Stephen D. Erickson ◽  
Karl H. Mayer ◽  
Ting Rei Tan ◽  
...  

Large-scale quantum computers will require quantum gate operations between widely separated qubits. A method for implementing such operations, known as quantum gate teleportation (QGT), requires only local operations, classical communication, and shared entanglement. We demonstrate QGT in a scalable architecture by deterministically teleporting a controlled-NOT (CNOT) gate between two qubits in spatially separated locations in an ion trap. The entanglement fidelity of our teleported CNOT is in the interval (0.845, 0.872) at the 95% confidence level. The implementation combines ion shuttling with individually addressed single-qubit rotations and detections, same- and mixed-species two-qubit gates, and real-time conditional operations, thereby demonstrating essential tools for scaling trapped-ion quantum computers combined in a single device.


2019 ◽  
Vol 33 (12) ◽  
pp. 1950118
Author(s):  
Yas Al-Hadeethi ◽  
Bahaaudin M. Raffah ◽  
Nawal Almalky ◽  
E. M. Khalil

In this paper, the interaction between two trap ions with laser beam and electromagnetic field containing the Stark shift terms has been investigated. The analytical solution for the differential equations which describes the system Hamiltonian is obtained. The dynamical behavior for the entanglement, entropy squeezing and purity of system are discussed. Some important physical characteristics such as revivals and collapses for the occupation of the trapped ion, entanglement sudden death (birth) and single trapped ion entropy squeezing are discussed. In addition, the influence of Lamb–Dicke parameter and the initial states on the evolution of the entanglement, linear entropy are studied. Finally, some remarks about the obtained results are given briefly.


2002 ◽  
Vol 66 (6) ◽  
Author(s):  
X. Zhao ◽  
V. L. Ryjkov ◽  
H. A. Schuessler
Keyword(s):  
Ion Trap ◽  

Sign in / Sign up

Export Citation Format

Share Document